-
提出了一种基于戟形人工表面等离激元(spoof surface plasmon polaritons, SSPPs)的具有宽频带外抑制特性的紧凑型宽带带通滤波器. 设计的滤波结构是通过在基板底层蚀刻周期性的戟形槽和在顶层加载带有月牙形贴片的微带到槽线过渡结构实现的. 与传统的I形SSPPs相比, 戟形SSPPs具有更好的慢波特性, 基于戟形SSPPs设计的带通滤波器可以实现更紧凑的结构. 设计的滤波器通带的上下截止频率可以分别通过调整SSPPs结构和微带到槽线过渡结构来调节. 仿真结果表明, 宽带带通滤波器中心频率为2.85 GHz, 相对带宽为130%, 通带内的回波损耗优于–10 dB, 在5.6—20.0 GHz之间具有极强的–40 dB带外抑制. 设计的宽带带通滤波器结构尺寸紧凑, 仅为1.08λg × 0.39λg, 其中λg是中心频率处的波长. 为了验证宽带带通滤波器的有效性, 采用传统的印刷电路板技术加工了宽带带通滤波器. 测量结果与仿真结果吻合较好, 验证了设计的可行性. 本文所提出的宽带带通滤波器显示了在微波频率下开发SSPPs功能器件和电路的良好前景.In this paper, a compact broadband bandpass filter with wide out-of-band rejection characteristics based on halberd-shaped spoof surface plasmon polariton (SSPP) is proposed. The filtering structure is achieved by etching a periodic halberd-shaped groove at the bottom of the substrate and a microstrip-to-slot line transition with a crescent-shaped patch at the top. Compared with the traditional dumbbell-shaped SSPP, the halberd-shaped SSPP has good slow-wave property, and the designed bandpass filter based on halberd-shaped SSPP can achieve a more compact size. The upper cutoff frequency and lower cutoff frequency of the passband can be adjusted by regulating the SSPP structure and the transition structure from microstrip-to-slot line, respectively. The simulation results show that the center frequency of broadband bandpass filter is 2.85 GHz, with the relative bandwidth of 130%, and the return loss in the passband is better than –10 dB, and the extreme strong out-of-band rejection of –40 dB from 5.6 GHz to 20.0 GHz. The size of the broadband bandpass filter is compact, only 1.08λg × 0.39λg, where λg is the wavelength at the center frequency. In order to verify the effectiveness of the wideband bandpass filter, the traditional printed circuit board technology is used to fabricate the wideband bandpass filter. The measurement results are in good agreement with the simulation results, verifying the feasibility of the design. The proposed broadband bandpass filter shows promising prospects for developing SSPP functional devices and circuits at microwave frequencies.
-
Keywords:
- spoof surface plasmon polariton /
- broadband bandpass filter /
- microstrip-to-slotline transition structure
[1] Noura A, Benaissa M, Abri M, Badaoui H, Vuong T H, Tao J 2019 Microw. Opt. Techn. Lett. 61 1473Google Scholar
[2] Shen G X, Che W Q, Feng W J, Shi Y R, Shen Y M, Xu F 2021 IEEE Trans. Circuits Syst. II 68 1778Google Scholar
[3] 兰峰, 高喜, 亓丽梅 2014 63 104209Google Scholar
Lan F, Gao X, Qi L M 2014 Acta Phys. Sin. 63 104209Google Scholar
[4] Pendry J B, Martin-Moreno L, Garcia-Vidal F J 2004 Science 305 847Google Scholar
[5] Liao Z, Zhao J, Pan B C, Shen X P, Cui T J 2014 J. Phys. D 47 315103Google Scholar
[6] 罗宇轩, 程用志, 陈浮, 罗辉, 李享成 2023 72 044101Google Scholar
Luo Y X, Cheng Y Z, Chen F, Luo H, Li X C 2023 Acta Phys. Sin. 72 044101Google Scholar
[7] 盛世威, 李康, 孔繁敏, 岳庆炀, 庄华伟, 赵佳 2015 64 108402Google Scholar
Sheng S W, Li K, Kong F M, Yue Q Y, Zhuang H W, Zhao J 2015 Acta Phys. Sin. 64 108402Google Scholar
[8] Chen P, Li L P, Yang K, Chen Q 2018 IEEE Microw. Wirel. Compon. Lett. 28 984Google Scholar
[9] Sun S P, Cheng Y Z, Luo H, Chen F, Li X C 2023 Plasmonics 18 165
[10] Wang J, Zhao L, Hao Z C, Shen X, Cui T J 2019 Opt. Lett 44 3374Google Scholar
[11] Kianinejad A, Chen Z N, Qiu C W 2015 IEEE Trans. Microw. Theory Tech. 63 1817Google Scholar
[12] Yin J Y, Ren J, Zhang Q, Zhang H C, Liu Y Q, Li Y B, Cui T J 2016 IEEE Trans. Antennas Propagat. 64 5181Google Scholar
[13] Wang J, Zhao L, Hao Z C 2019 IEEE Access 7 35089Google Scholar
[14] Guan D F, You P, Zhang Q F, Xiao K, Yong S W 2017 IEEE Trans. Microw. Theory Tech. 65 4925Google Scholar
[15] Moznebi A R, Afrooz K, Arsanjani A 2022 Int. J. Electron. Commun. 145 154084Google Scholar
[16] Luo Y X, Yu J W, Cheng Y Z, Chen F, Luo H 2022 Appl. Phys. A 128 1Google Scholar
[17] Guan D F, You P, Zhang Q F, Yang Z B, Liu H W, Yong S W 2018 IEEE Trans. Microw. Theory Tech. 66 2946Google Scholar
[18] Sangam R S, Kshetrimayum R S 2021 IET Microw. Antennas Propag. 15 289Google Scholar
[19] Liu H, Wang Z B, Zhang Q F, Ma H F, Ren B P, Wen P 2019 IEEE Access 7 44212Google Scholar
[20] Guo Y J, Xu K D, Liu Y H, Tang X H 2018 IEEE Access 6 10249Google Scholar
-
表 1 与参考文献中带通滤波器的性能对比(FBW, 分数带宽)
Table 1. Comparison of our proposed bandpass filters with bandpass filters in references (FBW, fractional bandwidth).
参考文献 频率范围 FBW/% 带外抑制 尺寸(λg×λg) [8] 7.3—11.2 42.2 –40 dB@11.8—19.8 GHz 2.85×0.67 [15] 1.18—6.18 135.8 –31 dB@6.9—18.0 GHz 1.83×0.46 [17] 8—16 67.0 –7 dB@16.2—17.0 GHz 2.64×0.29 [18] 8.0—13.5 51.0 –40 dB@14.0—19.5 GHz 1.87×0.63 [19] 2.1—8.0 16.8 –30 dB@8.9—20.0 GHz 1.47×0.42 [20] 1.1—7.3 147.6 –30 dB@7.5—20.0 GHz 2.95×0.89 本文 1.0—4.7 130.0 –40 dB@5.6—20.0 GHz 1.08×0.39 -
[1] Noura A, Benaissa M, Abri M, Badaoui H, Vuong T H, Tao J 2019 Microw. Opt. Techn. Lett. 61 1473Google Scholar
[2] Shen G X, Che W Q, Feng W J, Shi Y R, Shen Y M, Xu F 2021 IEEE Trans. Circuits Syst. II 68 1778Google Scholar
[3] 兰峰, 高喜, 亓丽梅 2014 63 104209Google Scholar
Lan F, Gao X, Qi L M 2014 Acta Phys. Sin. 63 104209Google Scholar
[4] Pendry J B, Martin-Moreno L, Garcia-Vidal F J 2004 Science 305 847Google Scholar
[5] Liao Z, Zhao J, Pan B C, Shen X P, Cui T J 2014 J. Phys. D 47 315103Google Scholar
[6] 罗宇轩, 程用志, 陈浮, 罗辉, 李享成 2023 72 044101Google Scholar
Luo Y X, Cheng Y Z, Chen F, Luo H, Li X C 2023 Acta Phys. Sin. 72 044101Google Scholar
[7] 盛世威, 李康, 孔繁敏, 岳庆炀, 庄华伟, 赵佳 2015 64 108402Google Scholar
Sheng S W, Li K, Kong F M, Yue Q Y, Zhuang H W, Zhao J 2015 Acta Phys. Sin. 64 108402Google Scholar
[8] Chen P, Li L P, Yang K, Chen Q 2018 IEEE Microw. Wirel. Compon. Lett. 28 984Google Scholar
[9] Sun S P, Cheng Y Z, Luo H, Chen F, Li X C 2023 Plasmonics 18 165
[10] Wang J, Zhao L, Hao Z C, Shen X, Cui T J 2019 Opt. Lett 44 3374Google Scholar
[11] Kianinejad A, Chen Z N, Qiu C W 2015 IEEE Trans. Microw. Theory Tech. 63 1817Google Scholar
[12] Yin J Y, Ren J, Zhang Q, Zhang H C, Liu Y Q, Li Y B, Cui T J 2016 IEEE Trans. Antennas Propagat. 64 5181Google Scholar
[13] Wang J, Zhao L, Hao Z C 2019 IEEE Access 7 35089Google Scholar
[14] Guan D F, You P, Zhang Q F, Xiao K, Yong S W 2017 IEEE Trans. Microw. Theory Tech. 65 4925Google Scholar
[15] Moznebi A R, Afrooz K, Arsanjani A 2022 Int. J. Electron. Commun. 145 154084Google Scholar
[16] Luo Y X, Yu J W, Cheng Y Z, Chen F, Luo H 2022 Appl. Phys. A 128 1Google Scholar
[17] Guan D F, You P, Zhang Q F, Yang Z B, Liu H W, Yong S W 2018 IEEE Trans. Microw. Theory Tech. 66 2946Google Scholar
[18] Sangam R S, Kshetrimayum R S 2021 IET Microw. Antennas Propag. 15 289Google Scholar
[19] Liu H, Wang Z B, Zhang Q F, Ma H F, Ren B P, Wen P 2019 IEEE Access 7 44212Google Scholar
[20] Guo Y J, Xu K D, Liu Y H, Tang X H 2018 IEEE Access 6 10249Google Scholar
计量
- 文章访问数: 3983
- PDF下载量: 114
- 被引次数: 0