Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Silicon-based compact mode converter using bricked subwavelength grating

Lu Meng-Jia Yun Bin-Feng

Citation:

Silicon-based compact mode converter using bricked subwavelength grating

Lu Meng-Jia, Yun Bin-Feng
PDF
HTML
Get Citation
  • Facing the increasing capacity requirements of on-chip optical interconnects, mode division multiplexing technology (MDM), which fully uses the different spatial eigenmodes at the same wavelength as independent channels to transmit optical signals, has attracted tremendous interest. Mode-order converter that can convert the fundamental mode into high-order mode is a key component in MDM system. However, it is still very challenging to achieve compact mode-order converters with high performances. Subwavelength grating (SWG) can be equivalent to homogenous material, which has the prominent advantages such as controlling over birefringence, dispersion and anisotropy, thus making photonic devices possess high performance. Wheras the conventional SWG only needs single-etch step, but the implementation of SWG structure usually requires a fabrication resolution on the order of 100 nm and below, which is difficult for current wafer-scale fabrication technology. The anisotropic response of SWG can be further engineered by introducing bricked topology structure, providing an additional degree of freedom in the design. Meanwhile, the requirement for fabrication resolution can also be reduced (> 100 nm). In this work, we experimentally demonstrate compact TE0-TE1 mode-order converter and TE0-TE2 mode-order converter by using a bricked subwavelength grating (BSWG) based on a silicon-on-insulator (SOI) with the BSWG having a minimum feature size of 145 nm. In the proposed mode-order converter, a quasi-TE0 mode is generated in the BSWG region, which can be regarded as an effective bridge between the two TE modes to be converted. Flexible mode conversion can be realized by only choosing appropriate structural parameters for specific mode transitions between input/output modes and the quasi-TE0 mode. By combining three-dimensional (3D) finite difference time domain (FDTD) and particle swarm optimization (PSO) method, TE0-TE1 mode-order converter and TE0-TE2 mode-order converter are optimally designed. They can convert TE0 mode into TE1 and TE2 mode with conversion length of 9.39 µm and 11.27 µm, respectively. The simulation results show that the insertion loss of < 1 dB and crosstalk of < –15 dB are achieved for both TE0-TE1 mode-order converter and TE0-TE2 mode-order converter, their corresponding working bandwidths being 128 nm (1511–1639 nm) and 126 nm (1527–1653 nm), respectively. The measurement results indicate that insertion loss and crosstalk are, respectively, less than 2.5 dB and –10 dB in a bandwidth of 68 nm (1512–1580 nm, limited by the laser tuning range and grating coupler).
      Corresponding author: Yun Bin-Feng, ybf@seu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 62171118)
    [1]

    Luo L W, Ophir N, Chen C P, Gabrielli L H, Poitras C B, Bergmen K, and Lipson M 2014 Nat. Commun. 5 3069Google Scholar

    [2]

    Li C L, Liu D J, and Dai D X 2019 Nanophotonics 8 227Google Scholar

    [3]

    Hsu Y, Chuang C Y, Wu X R, Chen G H, Hsu C W, Chang Y C, Chow C W, Chen J, Lai Y C, Yeh C H, Tsang H K 2018 IEEE Photonics Technol. L. 30 1052Google Scholar

    [4]

    Li H Q, Wang P J, Yang T J, Dai T, Wang G C, Li S Q, Chen W W, Yang J Y 2018 Opt. Laser Technol. 100 7Google Scholar

    [5]

    Pan T H and Tseng S Y 2015 Opt. Express 23 10405Google Scholar

    [6]

    Xu Y, Liu L P, Hu X, Dong Y, Zhang B, Ni Y 2022 Opt. Laser Technol. 151 108028Google Scholar

    [7]

    Ohana D, Levy U 2014 Opt. Express 22 27617Google Scholar

    [8]

    Gabrielli L H, Liu D, Johnson S G, Lipson M 2012 Nat. Commun. 3 1217Google Scholar

    [9]

    Xu H N, Shi Y C 2018 Laser Photonics Rev. 12 1700240Google Scholar

    [10]

    Chang W J, Lu L L Z, Ren X S, Lu L H, Cheng M F, Liu D M, Zhang M M 2018 IEEE Photonics J. 10 4501008Google Scholar

    [11]

    Garcia-Rodriguez D, Corral J L, Griol A, Llorente R 2017 Opt. Lett. 42 1221Google Scholar

    [12]

    Chen W W, Wang P J, Yang J Y 2014 IEEE Photonics Technol. L. 26 2043Google Scholar

    [13]

    Oner B B, Ustun K, Kurt H, Okyay A K, Turhan-Sayan G 2015 Opt. Express 23 3186Google Scholar

    [14]

    Chack D, Hassan S, Qasim M 2020 Appl. Opt. 59 3652Google Scholar

    [15]

    Liu L P, Xu Y, Wen L, Dong Y, Zhang B, Ni Y 2019 Appl. Optics 58 9075Google Scholar

    [16]

    Cheben P, Halir R, Schmid J H, Atwater H A, Smith D R 2018 Nature 560 565Google Scholar

    [17]

    Luque-González J M, Sánchez-Postigo A, Hadij-ElHouati A, Ortega-Moñux A, Wangüemert-Pérez J G, Schmid J H, Cheben P, Molina-Fernández I, Halir R, 2021 Nanophotonics 10 2765Google Scholar

    [18]

    Yu Z J, Xu H N, Liu D J, Li H, Shi Y C, Dai D X 2022 J. Lightwave Technol. 40 1784Google Scholar

    [19]

    Wu F, Liu T T, Long Y, Xiao S Y, Chen G Y 2023 Phys. Rev. B 107 165428Google Scholar

    [20]

    Mia M B, Jaidye N, Ahmed I, Ahmed S Z, Kim S 2023 Opt. Express 31 4140Google Scholar

    [21]

    He Y, Zhang Y, Zhu Q M, An S, Cao R Y, Guo X H, Qiu C Y, Su Y K 2018 J. Lightwave Technol. 36 5746Google Scholar

    [22]

    González-Andrade D, Gonzalo Wanguemert-Perez J, Velasco A V, Ortega-Monux A, Herrero-Bermello A, Molina-Fernandez I, Halir R, Cheben P 2018 IEEE Photonics J. 10 2201010Google Scholar

    [23]

    González-Andrade D, Dias A, Wanguemert-Perez J G, Ortega-Monux A, Molina-Fernandez I, Halir R, Cheben P, Velasco A V 2020 Opt. Laser Technol. 129 106297Google Scholar

    [24]

    Cheng Z, Wang J, Yang Z Y, Zhu L N, Yang Y Q, Huang Y Q, Ren X M 2019 Opt. Express 27 34434Google Scholar

    [25]

    Wang H W, Zhang Y, He Y, Zhu Q M, Sun L, Su Y K 2019 Adv. Opt. Mater. 7 1801191Google Scholar

    [26]

    Sun L, Hu R, Zhang Z H, He Y, Su Y K 2021 IEEE J. Sel. Top. Quant. 27 8100308Google Scholar

    [27]

    Luque-González J M, Ortega-Moñux A, Halir R, Schmid J H, Cheben P, Molina-Fernández I, Wangüemert-Pérez J G 2021 Laser Photonics Rev. 15 2000478Google Scholar

    [28]

    Lu M J, Deng C Y, Sun Y, Wang D Y, Huang L, Liu P C, Lin D D, Cheng W, Hu G H, Lin T, Yun B F, Cui Y P 2022 Opt. Express 30 24655Google Scholar

    [29]

    Luque-González J M, Herrero-Bermello A, Ortega-Moux A, Sánchez-Rodríguez M, Velasco A V, Schmid J H, Cheben P, Molina-Fernández I, Halir R. 2020 Opt. Lett. 45 3398Google Scholar

    [30]

    Yao R K, Li H X, Zhang B H, Chen W W, Wang P J, Dai S X, Liu Y X, Li J, Li Y, Fu Q, Dai T G, Yu H, Yang J Y, Pavesi L 2021 J. Lightwave Technol. 39 6253Google Scholar

    [31]

    Mao S Q, Hu J Z, Zhang H Y, Jiang W F 2022 IEEE J. Quantum Elect. 58 8400106Google Scholar

  • 图 1  (a) 模式转换器方案的结构示意图; (b), (c) BSWG的部分放大图与SEM图

    Figure 1.  (a) Schematic of the mode converter; (b), (c) part enlarged view and SEM image of the BSWG.

    图 2  器件优化过程流程图

    Figure 2.  Flow chart of the optimization process.

    图 3  (a) TE0-TE1模式转换器的透射光谱; (b) TE0-TE2模式转换器的透射光谱

    Figure 3.  (a) Transmission spectra for the TE0-TE1 mode converter; (b) transmission spectra for the TE0-TE2 mode converter.

    图 4  (a) 带有TE GC的直波导显微图; (b) TE GC的SEM图; (c) 不同光纤角度下TE耦合光栅的传输光谱

    Figure 4.  (a) Microscope image of the reference straight waveguide with TE-type grating couplers; (b) SEM image of TE-type grating coupler; (c) transmission spectra of TE-type grating couplers under different fiber angles.

    图 5  (a), (c) TE0-TE1模式转换器的测试方案显微图; (b), (d) TE0-TE2模式转换器的测试方案显微图以及TE1-TE3模式复用器的SEM图

    Figure 5.  (a), (c) Microscope images of the measure schemes for TE0-TE1 mode converter; (b), (d) microscope images of the measure schemes for TE0-TE2 mode converter and SEM images of TE1-TE3 multiplexer.

    图 6  TE0-TE1模式转换器(a)和TE0-TE2模式转换器(b)的SEM图及其放大的伪彩图

    Figure 6.  SEM images and corresponding pseudocolor SEM images of TE0-TE1 mode converter (a) and TE0-TE2 mode converter (b).

    图 7  模式转换器的插损和串扰的测试链路图

    Figure 7.  Experimental setup for measuring the insertion loss and crosstalk of mode converter.

    图 8  测试得到的器件传输谱 (a) TE0-TE1模式转换器; (b) TE0-TE2模式转换器

    Figure 8.  Measured transmission spectra: (a) TE0-TE1 mode converter; (b) TE0-TE2 mode converter.

    表 1  模式转换器的优化设计参数

    Table 1.  Optimized design parameters for the mode converter.

    模式转换功能WMMI/μmWO/μmWT2/μmWD/μmLT1/μmLT2/μmLc/μm$ \overline {\Delta z} $
    TE0-TE12.100.90.22903.003.23.190.16
    TE0-TE22.671.40.3500.3733.214.04.060.14
    DownLoad: CSV

    表 2  模式(解)复用器的详细参数

    Table 2.  Detail parameters for the mode (de) multiplexer.

    模式(解)
    复用器
    总线波导
    的宽度/μm
    接入波导
    宽度/μm
    间隔/nm耦合长度/μm
    TE10.8350.420015.5
    TE21.290.40620021.3
    TE31.630.3820018
    DownLoad: CSV
    Baidu
  • [1]

    Luo L W, Ophir N, Chen C P, Gabrielli L H, Poitras C B, Bergmen K, and Lipson M 2014 Nat. Commun. 5 3069Google Scholar

    [2]

    Li C L, Liu D J, and Dai D X 2019 Nanophotonics 8 227Google Scholar

    [3]

    Hsu Y, Chuang C Y, Wu X R, Chen G H, Hsu C W, Chang Y C, Chow C W, Chen J, Lai Y C, Yeh C H, Tsang H K 2018 IEEE Photonics Technol. L. 30 1052Google Scholar

    [4]

    Li H Q, Wang P J, Yang T J, Dai T, Wang G C, Li S Q, Chen W W, Yang J Y 2018 Opt. Laser Technol. 100 7Google Scholar

    [5]

    Pan T H and Tseng S Y 2015 Opt. Express 23 10405Google Scholar

    [6]

    Xu Y, Liu L P, Hu X, Dong Y, Zhang B, Ni Y 2022 Opt. Laser Technol. 151 108028Google Scholar

    [7]

    Ohana D, Levy U 2014 Opt. Express 22 27617Google Scholar

    [8]

    Gabrielli L H, Liu D, Johnson S G, Lipson M 2012 Nat. Commun. 3 1217Google Scholar

    [9]

    Xu H N, Shi Y C 2018 Laser Photonics Rev. 12 1700240Google Scholar

    [10]

    Chang W J, Lu L L Z, Ren X S, Lu L H, Cheng M F, Liu D M, Zhang M M 2018 IEEE Photonics J. 10 4501008Google Scholar

    [11]

    Garcia-Rodriguez D, Corral J L, Griol A, Llorente R 2017 Opt. Lett. 42 1221Google Scholar

    [12]

    Chen W W, Wang P J, Yang J Y 2014 IEEE Photonics Technol. L. 26 2043Google Scholar

    [13]

    Oner B B, Ustun K, Kurt H, Okyay A K, Turhan-Sayan G 2015 Opt. Express 23 3186Google Scholar

    [14]

    Chack D, Hassan S, Qasim M 2020 Appl. Opt. 59 3652Google Scholar

    [15]

    Liu L P, Xu Y, Wen L, Dong Y, Zhang B, Ni Y 2019 Appl. Optics 58 9075Google Scholar

    [16]

    Cheben P, Halir R, Schmid J H, Atwater H A, Smith D R 2018 Nature 560 565Google Scholar

    [17]

    Luque-González J M, Sánchez-Postigo A, Hadij-ElHouati A, Ortega-Moñux A, Wangüemert-Pérez J G, Schmid J H, Cheben P, Molina-Fernández I, Halir R, 2021 Nanophotonics 10 2765Google Scholar

    [18]

    Yu Z J, Xu H N, Liu D J, Li H, Shi Y C, Dai D X 2022 J. Lightwave Technol. 40 1784Google Scholar

    [19]

    Wu F, Liu T T, Long Y, Xiao S Y, Chen G Y 2023 Phys. Rev. B 107 165428Google Scholar

    [20]

    Mia M B, Jaidye N, Ahmed I, Ahmed S Z, Kim S 2023 Opt. Express 31 4140Google Scholar

    [21]

    He Y, Zhang Y, Zhu Q M, An S, Cao R Y, Guo X H, Qiu C Y, Su Y K 2018 J. Lightwave Technol. 36 5746Google Scholar

    [22]

    González-Andrade D, Gonzalo Wanguemert-Perez J, Velasco A V, Ortega-Monux A, Herrero-Bermello A, Molina-Fernandez I, Halir R, Cheben P 2018 IEEE Photonics J. 10 2201010Google Scholar

    [23]

    González-Andrade D, Dias A, Wanguemert-Perez J G, Ortega-Monux A, Molina-Fernandez I, Halir R, Cheben P, Velasco A V 2020 Opt. Laser Technol. 129 106297Google Scholar

    [24]

    Cheng Z, Wang J, Yang Z Y, Zhu L N, Yang Y Q, Huang Y Q, Ren X M 2019 Opt. Express 27 34434Google Scholar

    [25]

    Wang H W, Zhang Y, He Y, Zhu Q M, Sun L, Su Y K 2019 Adv. Opt. Mater. 7 1801191Google Scholar

    [26]

    Sun L, Hu R, Zhang Z H, He Y, Su Y K 2021 IEEE J. Sel. Top. Quant. 27 8100308Google Scholar

    [27]

    Luque-González J M, Ortega-Moñux A, Halir R, Schmid J H, Cheben P, Molina-Fernández I, Wangüemert-Pérez J G 2021 Laser Photonics Rev. 15 2000478Google Scholar

    [28]

    Lu M J, Deng C Y, Sun Y, Wang D Y, Huang L, Liu P C, Lin D D, Cheng W, Hu G H, Lin T, Yun B F, Cui Y P 2022 Opt. Express 30 24655Google Scholar

    [29]

    Luque-González J M, Herrero-Bermello A, Ortega-Moux A, Sánchez-Rodríguez M, Velasco A V, Schmid J H, Cheben P, Molina-Fernández I, Halir R. 2020 Opt. Lett. 45 3398Google Scholar

    [30]

    Yao R K, Li H X, Zhang B H, Chen W W, Wang P J, Dai S X, Liu Y X, Li J, Li Y, Fu Q, Dai T G, Yu H, Yang J Y, Pavesi L 2021 J. Lightwave Technol. 39 6253Google Scholar

    [31]

    Mao S Q, Hu J Z, Zhang H Y, Jiang W F 2022 IEEE J. Quantum Elect. 58 8400106Google Scholar

  • [1] Li Wen-Qiu, Tang Yan-Na, Liu Ya-Lin, Wang Gang. Influence of electron temperature anisotropy on wave mode propagation and power deposition characteristics in helicon plasma. Acta Physica Sinica, 2023, 72(5): 055202. doi: 10.7498/aps.72.20222048
    [2] Tao Guang-Yi, Qi Peng-Fei, Dai Yu-Chen, Shi Bei-Bei, Huang Yi-Jing, Zhang Tian-Hao, Fang Zhe-Yu. Enhancement of photoluminescence of monolayer transition metal dichalcogenide by subwavelength TiO2 grating. Acta Physica Sinica, 2022, 71(8): 087801. doi: 10.7498/aps.71.20212358
    [3] Wang Jing-Li, Zhang Jian-Zhe, Chen He-Ming. Design and simulation of polarization-insensitive ring resonator based on subwavelength grating and sandwiched structure. Acta Physica Sinica, 2021, 70(12): 124201. doi: 10.7498/aps.70.20201965
    [4] Zhang Fu-Ling, Fu Li-Shan, Hu Pi-Li, Han Wen-Jie, Wang Hong-Zhuo, Zhang Feng, Guan Bao-Lu. Ultra-narrow linewidth characteristics of 795-nm subwavelength grating-coupled cavity vertical cavity surface emitting laser. Acta Physica Sinica, 2021, 70(22): 224207. doi: 10.7498/aps.70.20210293
    [5] Xue Yan-Ru, Tian Peng-Fei, Jin Wa, Zhao Neng, Jin Yun, Bi Wei-Hong. Superimposed long period gratings based mode converter in few-mode fiber. Acta Physica Sinica, 2019, 68(5): 054204. doi: 10.7498/aps.68.20181674
    [6] Wang Shuo, Chang Yong-Wei, Chen Jing, Wang Ben-Yan, He Wei-Wei, Ge Hao. Total ionizing dose effects on innovative silicon-on-insulator static random access memory cell. Acta Physica Sinica, 2019, 68(16): 168501. doi: 10.7498/aps.68.20190405
    [7] Wang Ru, Wang Xiang-Xian, Yang Hua, Ye Song. Theoretical investigation of adjustable period sub-wavelength grating inscribed by TE0 waveguide modes interference lithography. Acta Physica Sinica, 2016, 65(9): 094206. doi: 10.7498/aps.65.094206
    [8] Qin Chen, Yu Hui, Ye Qiao-Bo, Wei Huan, Jiang Xiao-Qing. An improved Mach-Zehnder acousto-optic modulator on a silicon-on-insulator platform. Acta Physica Sinica, 2016, 65(1): 014304. doi: 10.7498/aps.65.014304
    [9] Liu Yuan, Chen Hai-Bo, He Yu-Juan, Wang Xin, Yue Long, En Yun-Fei, Liu Mo-Han. Radiation effects on the low frequency noise in partially depleted silicon on insulator transistors. Acta Physica Sinica, 2015, 64(7): 078501. doi: 10.7498/aps.64.078501
    [10] Shi Yan-Mei, Liu Ji-Zhi, Yao Su-Ying, Ding Yan-Hong, Zhang Wei-Hua, Dai Hong-Li. A dual-trench silicon on insulator high voltage device with an L-shaped source field plate. Acta Physica Sinica, 2014, 63(23): 237305. doi: 10.7498/aps.63.237305
    [11] Wang Dong, Xu Sha, Cao Yan-Wei, Qin Fen. Design of a metallic photonic crystal high power microwave mode converter. Acta Physica Sinica, 2014, 63(1): 018401. doi: 10.7498/aps.63.018401
    [12] Yang Biao, Li Zhi-Yong, Xiao Xi, Nemkova Anastasia, Yu Jin-Zhong, Yu Yu-De. The progress of silicon-based grating couplers. Acta Physica Sinica, 2013, 62(18): 184214. doi: 10.7498/aps.62.184214
    [13] Zhang Li-Wei, Zhao Yu-Huan, Wang Qin, Fang Kai, Li Wei-Bin, Qiao Wen-Tao. Resonance properties of surface plasmon in the anisotropic metamaterial waveguide. Acta Physica Sinica, 2012, 61(6): 068401. doi: 10.7498/aps.61.068401
    [14] Li Shuo, Guan Bao-Lu, Shi Guo-Zhu, Guo Xia. Polarization stable vertical-cavity surface-emitting laser with surface sub-wavelength gratings. Acta Physica Sinica, 2012, 61(18): 184208. doi: 10.7498/aps.61.184208
    [15] Bai Wen-Li, Guo Bao-Shan, Cai Li-Kang, Gan Qiao-Qiang, Song Guo-Feng. Simulation of light coupling enhancement and localization of transmission field via subwavelength metallic gratings. Acta Physica Sinica, 2009, 58(11): 8021-8026. doi: 10.7498/aps.58.8021
    [16] Sun Xu, Zhao Qing, Li Hong-Fu. Study and design of broadband nonuniform ripple-wall TE0n-TE0(n+1) mode converters. Acta Physica Sinica, 2008, 57(4): 2130-2135. doi: 10.7498/aps.57.2130
    [17] Meng Fan-Yi, Wu Qun, Fu Jia-Hui, Gu Xue-Mai, Li Le-Wei. Resonance characteristics of a three-dimensional anisotropic metamaterial bilayer. Acta Physica Sinica, 2008, 57(10): 6213-6220. doi: 10.7498/aps.57.6213
    [18] Yang Hong-Wei, Yuan Hong, Chen Ru-Shan, Yang Yang. SO-FDTD analysis of anisotropic magnetized plasma. Acta Physica Sinica, 2007, 56(3): 1443-1446. doi: 10.7498/aps.56.1443
    [19] Liu Shao-Bin, Mo Jin-Jun, Yuan Nai-Chang. A JEC-FDTD implementation for anisotropic magnetized plasmas. Acta Physica Sinica, 2004, 53(3): 783-787. doi: 10.7498/aps.53.783
    [20] Liu Shao-Bin, Mo Jin-Jun, Yuan Nai-Chang. An auxiliary differential equation FDTD method for anisotropic magnetized plasmas. Acta Physica Sinica, 2004, 53(7): 2233-2236. doi: 10.7498/aps.53.2233
Metrics
  • Abstract views:  2759
  • PDF Downloads:  76
  • Cited By: 0
Publishing process
  • Received Date:  26 April 2023
  • Accepted Date:  25 May 2023
  • Available Online:  20 June 2023
  • Published Online:  20 August 2023

/

返回文章
返回
Baidu
map