- 
				Facing the increasing capacity requirements of on-chip optical interconnects, mode division multiplexing technology (MDM), which fully uses the different spatial eigenmodes at the same wavelength as independent channels to transmit optical signals, has attracted tremendous interest. Mode-order converter that can convert the fundamental mode into high-order mode is a key component in MDM system. However, it is still very challenging to achieve compact mode-order converters with high performances. Subwavelength grating (SWG) can be equivalent to homogenous material, which has the prominent advantages such as controlling over birefringence, dispersion and anisotropy, thus making photonic devices possess high performance. Wheras the conventional SWG only needs single-etch step, but the implementation of SWG structure usually requires a fabrication resolution on the order of 100 nm and below, which is difficult for current wafer-scale fabrication technology. The anisotropic response of SWG can be further engineered by introducing bricked topology structure, providing an additional degree of freedom in the design. Meanwhile, the requirement for fabrication resolution can also be reduced (> 100 nm). In this work, we experimentally demonstrate compact TE0-TE1 mode-order converter and TE0-TE2 mode-order converter by using a bricked subwavelength grating (BSWG) based on a silicon-on-insulator (SOI) with the BSWG having a minimum feature size of 145 nm. In the proposed mode-order converter, a quasi-TE0 mode is generated in the BSWG region, which can be regarded as an effective bridge between the two TE modes to be converted. Flexible mode conversion can be realized by only choosing appropriate structural parameters for specific mode transitions between input/output modes and the quasi-TE0 mode. By combining three-dimensional (3D) finite difference time domain (FDTD) and particle swarm optimization (PSO) method, TE0-TE1 mode-order converter and TE0-TE2 mode-order converter are optimally designed. They can convert TE0 mode into TE1 and TE2 mode with conversion length of 9.39 µm and 11.27 µm, respectively. The simulation results show that the insertion loss of < 1 dB and crosstalk of < –15 dB are achieved for both TE0-TE1 mode-order converter and TE0-TE2 mode-order converter, their corresponding working bandwidths being 128 nm (1511–1639 nm) and 126 nm (1527–1653 nm), respectively. The measurement results indicate that insertion loss and crosstalk are, respectively, less than 2.5 dB and –10 dB in a bandwidth of 68 nm (1512–1580 nm, limited by the laser tuning range and grating coupler).- 
										Keywords:
										
- subwavelength grating /
- mode-order converter /
- silicon-on-insulator /
- anisotropy
 [1] Luo L W, Ophir N, Chen C P, Gabrielli L H, Poitras C B, Bergmen K, and Lipson M 2014 Nat. Commun. 5 3069  Google Scholar Google Scholar[2] Li C L, Liu D J, and Dai D X 2019 Nanophotonics 8 227  Google Scholar Google Scholar[3] Hsu Y, Chuang C Y, Wu X R, Chen G H, Hsu C W, Chang Y C, Chow C W, Chen J, Lai Y C, Yeh C H, Tsang H K 2018 IEEE Photonics Technol. L. 30 1052  Google Scholar Google Scholar[4] Li H Q, Wang P J, Yang T J, Dai T, Wang G C, Li S Q, Chen W W, Yang J Y 2018 Opt. Laser Technol. 100 7  Google Scholar Google Scholar[5] Pan T H and Tseng S Y 2015 Opt. Express 23 10405  Google Scholar Google Scholar[6] Xu Y, Liu L P, Hu X, Dong Y, Zhang B, Ni Y 2022 Opt. Laser Technol. 151 108028  Google Scholar Google Scholar[7] Ohana D, Levy U 2014 Opt. Express 22 27617  Google Scholar Google Scholar[8] Gabrielli L H, Liu D, Johnson S G, Lipson M 2012 Nat. Commun. 3 1217  Google Scholar Google Scholar[9] Xu H N, Shi Y C 2018 Laser Photonics Rev. 12 1700240  Google Scholar Google Scholar[10] Chang W J, Lu L L Z, Ren X S, Lu L H, Cheng M F, Liu D M, Zhang M M 2018 IEEE Photonics J. 10 4501008  Google Scholar Google Scholar[11] Garcia-Rodriguez D, Corral J L, Griol A, Llorente R 2017 Opt. Lett. 42 1221  Google Scholar Google Scholar[12] Chen W W, Wang P J, Yang J Y 2014 IEEE Photonics Technol. L. 26 2043  Google Scholar Google Scholar[13] Oner B B, Ustun K, Kurt H, Okyay A K, Turhan-Sayan G 2015 Opt. Express 23 3186  Google Scholar Google Scholar[14] Chack D, Hassan S, Qasim M 2020 Appl. Opt. 59 3652  Google Scholar Google Scholar[15] Liu L P, Xu Y, Wen L, Dong Y, Zhang B, Ni Y 2019 Appl. Optics 58 9075  Google Scholar Google Scholar[16] Cheben P, Halir R, Schmid J H, Atwater H A, Smith D R 2018 Nature 560 565  Google Scholar Google Scholar[17] Luque-González J M, Sánchez-Postigo A, Hadij-ElHouati A, Ortega-Moñux A, Wangüemert-Pérez J G, Schmid J H, Cheben P, Molina-Fernández I, Halir R, 2021 Nanophotonics 10 2765  Google Scholar Google Scholar[18] Yu Z J, Xu H N, Liu D J, Li H, Shi Y C, Dai D X 2022 J. Lightwave Technol. 40 1784  Google Scholar Google Scholar[19] Wu F, Liu T T, Long Y, Xiao S Y, Chen G Y 2023 Phys. Rev. B 107 165428  Google Scholar Google Scholar[20] Mia M B, Jaidye N, Ahmed I, Ahmed S Z, Kim S 2023 Opt. Express 31 4140  Google Scholar Google Scholar[21] He Y, Zhang Y, Zhu Q M, An S, Cao R Y, Guo X H, Qiu C Y, Su Y K 2018 J. Lightwave Technol. 36 5746  Google Scholar Google Scholar[22] González-Andrade D, Gonzalo Wanguemert-Perez J, Velasco A V, Ortega-Monux A, Herrero-Bermello A, Molina-Fernandez I, Halir R, Cheben P 2018 IEEE Photonics J. 10 2201010  Google Scholar Google Scholar[23] González-Andrade D, Dias A, Wanguemert-Perez J G, Ortega-Monux A, Molina-Fernandez I, Halir R, Cheben P, Velasco A V 2020 Opt. Laser Technol. 129 106297  Google Scholar Google Scholar[24] Cheng Z, Wang J, Yang Z Y, Zhu L N, Yang Y Q, Huang Y Q, Ren X M 2019 Opt. Express 27 34434  Google Scholar Google Scholar[25] Wang H W, Zhang Y, He Y, Zhu Q M, Sun L, Su Y K 2019 Adv. Opt. Mater. 7 1801191  Google Scholar Google Scholar[26] Sun L, Hu R, Zhang Z H, He Y, Su Y K 2021 IEEE J. Sel. Top. Quant. 27 8100308  Google Scholar Google Scholar[27] Luque-González J M, Ortega-Moñux A, Halir R, Schmid J H, Cheben P, Molina-Fernández I, Wangüemert-Pérez J G 2021 Laser Photonics Rev. 15 2000478  Google Scholar Google Scholar[28] Lu M J, Deng C Y, Sun Y, Wang D Y, Huang L, Liu P C, Lin D D, Cheng W, Hu G H, Lin T, Yun B F, Cui Y P 2022 Opt. Express 30 24655  Google Scholar Google Scholar[29] Luque-González J M, Herrero-Bermello A, Ortega-Moux A, Sánchez-Rodríguez M, Velasco A V, Schmid J H, Cheben P, Molina-Fernández I, Halir R. 2020 Opt. Lett. 45 3398  Google Scholar Google Scholar[30] Yao R K, Li H X, Zhang B H, Chen W W, Wang P J, Dai S X, Liu Y X, Li J, Li Y, Fu Q, Dai T G, Yu H, Yang J Y, Pavesi L 2021 J. Lightwave Technol. 39 6253  Google Scholar Google Scholar[31] Mao S Q, Hu J Z, Zhang H Y, Jiang W F 2022 IEEE J. Quantum Elect. 58 8400106  Google Scholar Google Scholar
- 
				
    
    
表 1 模式转换器的优化设计参数 Table 1. Optimized design parameters for the mode converter. 模式转换功能 WMMI/μm WO/μm WT2/μm WD/μm LT1/μm LT2/μm Lc/μm $ \overline {\Delta z} $ TE0-TE1 2.10 0.9 0.229 0 3.00 3.2 3.19 0.16 TE0-TE2 2.67 1.4 0.350 0.373 3.21 4.0 4.06 0.14 表 2 模式(解)复用器的详细参数 Table 2. Detail parameters for the mode (de) multiplexer. 模式(解) 
 复用器总线波导 
 的宽度/μm接入波导 
 宽度/μm间隔/nm 耦合长度/μm TE1 0.835 0.4 200 15.5 TE2 1.29 0.406 200 21.3 TE3 1.63 0.38 200 18 
- 
				
[1] Luo L W, Ophir N, Chen C P, Gabrielli L H, Poitras C B, Bergmen K, and Lipson M 2014 Nat. Commun. 5 3069  Google Scholar Google Scholar[2] Li C L, Liu D J, and Dai D X 2019 Nanophotonics 8 227  Google Scholar Google Scholar[3] Hsu Y, Chuang C Y, Wu X R, Chen G H, Hsu C W, Chang Y C, Chow C W, Chen J, Lai Y C, Yeh C H, Tsang H K 2018 IEEE Photonics Technol. L. 30 1052  Google Scholar Google Scholar[4] Li H Q, Wang P J, Yang T J, Dai T, Wang G C, Li S Q, Chen W W, Yang J Y 2018 Opt. Laser Technol. 100 7  Google Scholar Google Scholar[5] Pan T H and Tseng S Y 2015 Opt. Express 23 10405  Google Scholar Google Scholar[6] Xu Y, Liu L P, Hu X, Dong Y, Zhang B, Ni Y 2022 Opt. Laser Technol. 151 108028  Google Scholar Google Scholar[7] Ohana D, Levy U 2014 Opt. Express 22 27617  Google Scholar Google Scholar[8] Gabrielli L H, Liu D, Johnson S G, Lipson M 2012 Nat. Commun. 3 1217  Google Scholar Google Scholar[9] Xu H N, Shi Y C 2018 Laser Photonics Rev. 12 1700240  Google Scholar Google Scholar[10] Chang W J, Lu L L Z, Ren X S, Lu L H, Cheng M F, Liu D M, Zhang M M 2018 IEEE Photonics J. 10 4501008  Google Scholar Google Scholar[11] Garcia-Rodriguez D, Corral J L, Griol A, Llorente R 2017 Opt. Lett. 42 1221  Google Scholar Google Scholar[12] Chen W W, Wang P J, Yang J Y 2014 IEEE Photonics Technol. L. 26 2043  Google Scholar Google Scholar[13] Oner B B, Ustun K, Kurt H, Okyay A K, Turhan-Sayan G 2015 Opt. Express 23 3186  Google Scholar Google Scholar[14] Chack D, Hassan S, Qasim M 2020 Appl. Opt. 59 3652  Google Scholar Google Scholar[15] Liu L P, Xu Y, Wen L, Dong Y, Zhang B, Ni Y 2019 Appl. Optics 58 9075  Google Scholar Google Scholar[16] Cheben P, Halir R, Schmid J H, Atwater H A, Smith D R 2018 Nature 560 565  Google Scholar Google Scholar[17] Luque-González J M, Sánchez-Postigo A, Hadij-ElHouati A, Ortega-Moñux A, Wangüemert-Pérez J G, Schmid J H, Cheben P, Molina-Fernández I, Halir R, 2021 Nanophotonics 10 2765  Google Scholar Google Scholar[18] Yu Z J, Xu H N, Liu D J, Li H, Shi Y C, Dai D X 2022 J. Lightwave Technol. 40 1784  Google Scholar Google Scholar[19] Wu F, Liu T T, Long Y, Xiao S Y, Chen G Y 2023 Phys. Rev. B 107 165428  Google Scholar Google Scholar[20] Mia M B, Jaidye N, Ahmed I, Ahmed S Z, Kim S 2023 Opt. Express 31 4140  Google Scholar Google Scholar[21] He Y, Zhang Y, Zhu Q M, An S, Cao R Y, Guo X H, Qiu C Y, Su Y K 2018 J. Lightwave Technol. 36 5746  Google Scholar Google Scholar[22] González-Andrade D, Gonzalo Wanguemert-Perez J, Velasco A V, Ortega-Monux A, Herrero-Bermello A, Molina-Fernandez I, Halir R, Cheben P 2018 IEEE Photonics J. 10 2201010  Google Scholar Google Scholar[23] González-Andrade D, Dias A, Wanguemert-Perez J G, Ortega-Monux A, Molina-Fernandez I, Halir R, Cheben P, Velasco A V 2020 Opt. Laser Technol. 129 106297  Google Scholar Google Scholar[24] Cheng Z, Wang J, Yang Z Y, Zhu L N, Yang Y Q, Huang Y Q, Ren X M 2019 Opt. Express 27 34434  Google Scholar Google Scholar[25] Wang H W, Zhang Y, He Y, Zhu Q M, Sun L, Su Y K 2019 Adv. Opt. Mater. 7 1801191  Google Scholar Google Scholar[26] Sun L, Hu R, Zhang Z H, He Y, Su Y K 2021 IEEE J. Sel. Top. Quant. 27 8100308  Google Scholar Google Scholar[27] Luque-González J M, Ortega-Moñux A, Halir R, Schmid J H, Cheben P, Molina-Fernández I, Wangüemert-Pérez J G 2021 Laser Photonics Rev. 15 2000478  Google Scholar Google Scholar[28] Lu M J, Deng C Y, Sun Y, Wang D Y, Huang L, Liu P C, Lin D D, Cheng W, Hu G H, Lin T, Yun B F, Cui Y P 2022 Opt. Express 30 24655  Google Scholar Google Scholar[29] Luque-González J M, Herrero-Bermello A, Ortega-Moux A, Sánchez-Rodríguez M, Velasco A V, Schmid J H, Cheben P, Molina-Fernández I, Halir R. 2020 Opt. Lett. 45 3398  Google Scholar Google Scholar[30] Yao R K, Li H X, Zhang B H, Chen W W, Wang P J, Dai S X, Liu Y X, Li J, Li Y, Fu Q, Dai T G, Yu H, Yang J Y, Pavesi L 2021 J. Lightwave Technol. 39 6253  Google Scholar Google Scholar[31] Mao S Q, Hu J Z, Zhang H Y, Jiang W F 2022 IEEE J. Quantum Elect. 58 8400106  Google Scholar Google Scholar
Catalog
Metrics
- Abstract views: 4918
- PDF Downloads: 126
- Cited By: 0


 
					 
		         
	         
  
					 
												






 
							 DownLoad:
DownLoad: 
				 
							 
							 
							 
							 
							 
							 
							