Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Theoretical study of photovoltaic performance for inverted halide perovskite solar cells

Zhang Ao Zhang Chun-Xiu Chen Yun-Lin Zhang Chun-Mei Meng Tao

Citation:

Theoretical study of photovoltaic performance for inverted halide perovskite solar cells

Zhang Ao, Zhang Chun-Xiu, Chen Yun-Lin, Zhang Chun-Mei, Meng Tao
科大讯飞翻译 (iFLYTEK Translation)
PDF
HTML
Get Citation
  • The existence of serious hysteresis effect for regular perovskite solar cells (PSCs) will affect their performances, however, the inverted PSCs can significantly suppress the hysteresis effect. To data, it has been very rarely reported to simulate the inverted planar heterojunction PSCs. In this paper, the effects of hole transport material (HTM), electron transport material (ETM), and ITO work function on performance of inverted MAPbI3 solar cells are carefully investigated in order to design the high-performance inverted PSCs. The inverted MAPbI3 solar cells using Cu2O, CuSCN, or NiOx as HTM, and PC61BM, TiO2, or ZnO as ETM are simulated with the program AMPS-1D. Simulation results reveal that i) the inverted MAPbI3 solar cells choosing NiOx as HTM can effectively improve the photovoltaic performance, and the excellent photovoltaic performance obtained by using TiO2 as ETM is almost the same as by using ZnO as ETM; ii) the ITO work function increasing from 4.6 eV to 5.0 eV can significantly enhance the photovoltaic performances of Cu2O— based and CuSCN— based inverted MAPbI3 solar cells, and the NiOx— based inverted MAPbI3 solar cells have only a minor photovoltaic performance enhancement; iii) based on the reported ITO work function between 4.6 eV and 4.8 eV, the maximum power conversion efficiency (PCE) of 27.075% and 29.588% for CuSCN— based and NiOx— based inverted MAPbI3 solar cells are achieved when the ITO work function reaches 4.8 eV. The numerical simulation gives that the increase of hole mobility in CuSCN and NiOx for ITO/CuSCN/MAPbI3/TiO2/Al and ITO/NiOx/MAPbI3/TiO2/Al can greatly improve the device performance. Experimentally, the maximum hole mobility 0.1 cm2·V–1·s–1 in CuSCN restricts the photovoltaic performance improvement of CuSCN— based inverted MAPbI3 solar cells, which means that there is still room for the improvement of cell performance through increasing the hole mobility in CuSCN. It is found that NiOx with a reasonable energy-band structure and high hole mobility 120 cm2·V–1·s–1 is an ideal HTM in inverted MAPbI3 solar cells. However, the increasing of electron mobility in TiO2 cannot improve the device photovoltaic performance of inverted MAPbI3 solar cells. These simulation results reveal the effects of ETM, HTM, and ITO work function on the photovoltaic performance of inverted MAPbI3 solar cells. Our researches may help to design the high-performance inverted PSCs.
      Corresponding author: Chen Yun-Lin, ylchen@bjtu.edu.cn
    [1]

    Zhou H P, Chen Q, Li G, Luo S, Song T B, Duan H S, Hong Z, You J B, Liu Y S, Yang Y 2014 Science 345 542Google Scholar

    [2]

    Yin W J, Shi T T, Yan Y T 2014 Appl. Phys. Lett. 104 063903Google Scholar

    [3]

    Boix P P, Nonomura K, Mathews N, Mhaisalkar S G 2014 Mater. Today 17 16Google Scholar

    [4]

    Akihiro K, Kenjiro T, Yasuo S, Tsutomu M 2009 J. Am. Chem. Soc. 131 6050Google Scholar

    [5]

    Meng L, You J B, Yang Y 2018 Nat. Commun. 9 5265Google Scholar

    [6]

    Snaith H J, Abate A, Ball J M, Eperon G E, Leijtens T, Noel N K, Stranks S D, Wang J T, Wojciechowski K, Zhang W 2014 J. Phys. Chem. Lett. 5 1511Google Scholar

    [7]

    Saliba M 2018 Science 359 388Google Scholar

    [8]

    Yu S, Yan Y, Chen Y, Chábera P, Zheng K, Liang Z 2019 J. Mater. Chem. A 7 2015Google Scholar

    [9]

    Liu T H, Chen K, Hu Q, Zhu R, Gong Q H 2016 Adv. Energy Mater. 6 1600457Google Scholar

    [10]

    Jeng J Y, Chiang Y F, Lee M H, Peng S R, Guo T F, Chen P, Wen T C 2013 Adv. Mater 25 3727Google Scholar

    [11]

    Li J W, Dong Q S, Li N, Wang L D 2017 Adv. Energy Mater. 7 1602922Google Scholar

    [12]

    Shi J J, Zhang H Y, Xu X, Li D M, Luo Y H, Meng Q B 2016 Small 12 5288Google Scholar

    [13]

    Kakavelakis G, Maksudov T, Konios D, Paradisanos I, Kioseoglou G, Stratakis E, Kymakis E 2017 Adv. Energy Mater. 7 1602120Google Scholar

    [14]

    Wang K C, Shen P S, Li M H, Chen S, Lin M W, Chen P, Guo T F 2014 ACS Appl. Mater. Interfaces 6 11851Google Scholar

    [15]

    Chen W, Wu Y Z, Yue Y F, Liu J, Zhang W J, Yang X D, Chen H, Bi E B, Ashraful I, Grätzel M, Han L Y 2015 Science 350 944Google Scholar

    [16]

    Bi C, Wang Q, Shao Y, Yuan Y, Xiao Z, Huang J 2015 Nat. Commun. 6 8747Google Scholar

    [17]

    Shao Y C, Yuan Y B, Huang J S 2016 Nat. Energy 1 15001Google Scholar

    [18]

    Kuang C Y, Tang G, Jiu T G, Yang H, Liu H B, Li B R, Luo W N, Li X G, Zhang W J, Lu F S, Fang J F, Li Y L 2015 Nano Lett. 15 2756Google Scholar

    [19]

    Luo D Y, Yang W Q, Wang Z P, Sadhanala A, Hu Q, Su R, Shivanna R, Trindade G F, Watts J F, Xu Z J, Liu T H, Chen K, Ye F J, Wu P, Zhao L C, Wu J, Tu Y G, Zhang Y F, Yang X Y, Zhang W, Friend R H, Gong Q H, Snaith H J, Zhu R 2018 Science 360 1442Google Scholar

    [20]

    Fonash S, Arch J, Cuiffi J, et al. A One-Dimensional Device Simulation Program for the Analysis of Microelectronic and Photonic Structures http://www.emprl.psu.edu/amps[1997-1-1]

    [21]

    Zhang A, Chen Y L, Yan J 2016 Ieee J. Quantum Elect. 52 1600106Google Scholar

    [22]

    Onoda-Yamamuro N, Matsuo T, Suga H 1992 J. Phys. Chem. Solids. 53 935Google Scholar

    [23]

    Laban W A, Etgar L 2013 Energ. Environ Sci. 6 3249Google Scholar

    [24]

    Stoumpos C C, Malliakas C D, Kanatzidis M G 2013 Inorg. Chem. 52 9019Google Scholar

    [25]

    Rode D L 1975 Semiconductors and Semimetals (New York: Academic) pp1–89

    [26]

    Muth J F, Kolbas R M, Sharma A K, Oktabrsky S, Narayan J 1999 J. Appl. Phys. 85 7884Google Scholar

    [27]

    Moormann H, Kohl D, Heiland G 1980 Surf. Sci. 100 302Google Scholar

    [28]

    Hagemark K J, Chacka L C 1975 J. Solid State Chem. 15 261Google Scholar

    [29]

    Kim K J, Park Y R 2001 Appl. Phys. Lett. 78 475Google Scholar

    [30]

    Wojciechowski K, Saliba M, Leijtens T, Abate A, Snaith H J 2014 Energ. Environ. Sci. 7 1142Google Scholar

    [31]

    Liu F, Zhu J, Wei J F, Li Y, Lv M, Yang S F, Zhang B, Yao J X, Dai S Y 2014 Appl. Phys. Lett. 104 253508Google Scholar

    [32]

    Jaffe J E, Kaspar T C, Droubay T C, Varga T, Bowden M E, Exarhos G J 2010 J. Phys. Chem. C 114 9111Google Scholar

    [33]

    Kaiser I, Ernst K, Fischer C H, Konenkamp R, Rost C, Sieber I, Lux-Steiner M C 2001 Sol. Energy Mater. Sol. Cells. 67 89Google Scholar

    [34]

    Pattanasattayavong P, Ndjawa G O N, Zhao K, Chou K W, Yaacobi-Gross N, O’Regan B C, Amassian A, Anthopoulos T D 2013 Chem. Commun. 49 4154Google Scholar

    [35]

    Pattanasattayavong P, Yaacobi-Gross N, Zhao K, Ndjawa G O N, Li J H, Yan F, O’Regan B C, Amassiann A, Anthopoulos T D 2013 Adv. Mater 25 1504Google Scholar

    [36]

    Rao V, Smakula A 1965 J. Appl. Phys. 36 2031Google Scholar

    [37]

    Ratcliff E L, Meyer J, Steirer K X, Armstrong N R, Olson D, Kahn A 2012 Org. Electron. 13 744Google Scholar

    [38]

    Wu H B, Wang L S 1997 J. Chem. Phys. 107 16Google Scholar

    [39]

    Liu M H, Zhou Z J, Zhang P P, Tian Q W, Zhou W H, Kou D X, Wu S X 2016 Opt. Express 24 1349Google Scholar

    [40]

    Rakhshani A E 1991 J. Appl. Phys. 69 2365Google Scholar

    [41]

    Ghijsen J, Tjeng L H, van Elp J, Eskes H, Westerink J, Sawatzky G A 1988 Phys. Rev. B 38 11322Google Scholar

    [42]

    Zuo C T, Ding L M 2015 Small 11 5528Google Scholar

    [43]

    Matsumura H, Fujii A, Kitatani T 1996 Jpn. J. Appl. Phys. 35 5631Google Scholar

    [44]

    Shewchun J, Dubow J, Wilmsen C W, Singh R, Burk D, Wager J F 1979 J. Appl. Phys. 50 2832Google Scholar

    [45]

    Park Y, Choong V, Gao Y, Hsieh B R, Tang C W 1996 Appl. Phys. Lett. 68 2699Google Scholar

    [46]

    Balasubramanian N, Subrahmanyam A 1991 J. Electrochem. Soc. 138 322Google Scholar

    [47]

    Nehate S D, Prakash A, DossMani P, Sundaram, K B 2018 ECS J. Solid State Sc. 7 87

  • 图 1  (a) 反式结构和(b) 正式结构平面异质结 MAPbI3太阳能电池的工作原理示意图

    Figure 1.  Schematic diagram of working principle in (a) inverted and (b) regular planar heterojunction MAPbI3 solar cells.

    图 2  模拟反式钙钛矿太阳电池 (a) ITO/HTM/MAPbI3/PC61BM/Al, (b) ITO/HTM/MAPbI3/TiO2/Al, (c) ITO/HTM/MAPbI3/ZnO/Al的PCE随MAPbI3厚度的变化, 前、后电极的功函数分别是4.6 eV (ITO) 和4.3 eV (Al)

    Figure 2.  The PCE of inverted perovskite solar cells for (a) ITO/HTM/MAPbI3/PC61BM/Al, (b) ITO/HTM/MAPbI3/TiO2/Al, and (c) ITO/HTM/MAPbI3/ZnO/Al simulated with the MAPbI3 thickness. Front and back contact work function: 4.6 eV (ITO) and 4.3 eV (Al), respectively.

    图 3  模拟反式钙钛矿太阳电池 (a) ITO/CuO2/MAPbI3/ETM/Al; (b) ITO/CuSCN/MAPbI3/ETM/Al; (c) ITO/NiOx/MAPbI3/ETM/Al的PCE和FF随ITO功函数的变化, ETM表示PC61BM, TiO2, ZnO

    Figure 3.  Simulation for PCE and FF of inverted perovskite solar cells for (a) ITO/CuO2/MAPbI3/ETM/Al, (b) ITO/CuSCN/MAPbI3/ETM/Al, and (c) ITO/NiOx/MAPbI3/ETM/Al solar cells as a function of ITO work function, here ETM is PC61BM, TiO2, or ZnO.

    图 4  太阳能电池的伏安特性随CuSCN和NiOx中空穴迁移率变化的函数, 前、后电极的功函数分别是: 4.6 eV (ITO) 和4.3 eV (Al) (a) ITO/CuSCN/MAPbI3/TiO2/Al; (b) ITO/NiOx/MAPbI3/TiO2/Al

    Figure 4.  J-V characteristics of solar cell as a function of hole mobility in CuSCN and NiOx. Front and back contact work function is 4.6 eV (ITO) and 4.3 eV (Al), respectively: (a) ITO/CuSCN/MAPbI3/TiO2/Al; (b) ITO/NiOx/MAPbI3/TiO2/Al.

    表 1  AMPS-1D采用的MAPbI3 和ETM参数

    Table 1.  AMPS-1D parameters set for MAPbI3 and ETM.

    ParametersMAPbI3ZnOTiO2PC61BM
    Dielectric constant23.3[22]8.12[25]100[30]3.9[18]
    Band gap/eV1.51[23]3.40[26]3.2[31]1.9[9]
    Electron affinity/eV3.93[23]4.19[27]4.0[31]3.9[9]
    Thickness/nm40-400909090
    Electron and hole mobility/cm2·V–1·s–150, 50[24]150, 0.0001[28]0.006, 0.006[30]0.0005, 0.0001[18]
    Acceptor concentration/cm–3(2.14 × 1017)[23]000
    Donor concentration/cm–30(5 × 1019)[29](5 × 1019)[30]5 × 1019
    Effective conduction band density/cm–31.66 × 10194.49 × 10181.0 × 10212.5 × 1020
    Effective valence band density/cm–35.41 × 10185.39 × 10182.0 × 10202.5 × 1020
    DownLoad: CSV

    表 2  AMPS-1D采用的HTM参数

    Table 2.  AMPS-1D parameters set for HTM.

    ParametersCuSCNNiOxCu2O
    Dielectric constant10[32]11.9[36]8.8[40]
    Band gap/eV3.4[33]3.7[37]2.17[41]
    Electron affinity/eV1.9[33]1.5[38]3.3[42]
    Thickness/nm200200200
    Electron and hole mobility/cm2·V–1·s–10.0001, 0.01—0.10[34]0.0001, 120[39]0.0001, 10[43]
    Acceptor concentration/cm–3(5 × 1018)[35](2.66 × 1017)[15](5 × 1015)[43]
    Donor concentration/cm–3000
    Effective conduction band density/cm–31.79 × 10192.5 × 10192.5 × 1019
    Effective valence band density/cm–32.51 × 10192.5 × 10192.5 × 1019
    DownLoad: CSV
    Baidu
  • [1]

    Zhou H P, Chen Q, Li G, Luo S, Song T B, Duan H S, Hong Z, You J B, Liu Y S, Yang Y 2014 Science 345 542Google Scholar

    [2]

    Yin W J, Shi T T, Yan Y T 2014 Appl. Phys. Lett. 104 063903Google Scholar

    [3]

    Boix P P, Nonomura K, Mathews N, Mhaisalkar S G 2014 Mater. Today 17 16Google Scholar

    [4]

    Akihiro K, Kenjiro T, Yasuo S, Tsutomu M 2009 J. Am. Chem. Soc. 131 6050Google Scholar

    [5]

    Meng L, You J B, Yang Y 2018 Nat. Commun. 9 5265Google Scholar

    [6]

    Snaith H J, Abate A, Ball J M, Eperon G E, Leijtens T, Noel N K, Stranks S D, Wang J T, Wojciechowski K, Zhang W 2014 J. Phys. Chem. Lett. 5 1511Google Scholar

    [7]

    Saliba M 2018 Science 359 388Google Scholar

    [8]

    Yu S, Yan Y, Chen Y, Chábera P, Zheng K, Liang Z 2019 J. Mater. Chem. A 7 2015Google Scholar

    [9]

    Liu T H, Chen K, Hu Q, Zhu R, Gong Q H 2016 Adv. Energy Mater. 6 1600457Google Scholar

    [10]

    Jeng J Y, Chiang Y F, Lee M H, Peng S R, Guo T F, Chen P, Wen T C 2013 Adv. Mater 25 3727Google Scholar

    [11]

    Li J W, Dong Q S, Li N, Wang L D 2017 Adv. Energy Mater. 7 1602922Google Scholar

    [12]

    Shi J J, Zhang H Y, Xu X, Li D M, Luo Y H, Meng Q B 2016 Small 12 5288Google Scholar

    [13]

    Kakavelakis G, Maksudov T, Konios D, Paradisanos I, Kioseoglou G, Stratakis E, Kymakis E 2017 Adv. Energy Mater. 7 1602120Google Scholar

    [14]

    Wang K C, Shen P S, Li M H, Chen S, Lin M W, Chen P, Guo T F 2014 ACS Appl. Mater. Interfaces 6 11851Google Scholar

    [15]

    Chen W, Wu Y Z, Yue Y F, Liu J, Zhang W J, Yang X D, Chen H, Bi E B, Ashraful I, Grätzel M, Han L Y 2015 Science 350 944Google Scholar

    [16]

    Bi C, Wang Q, Shao Y, Yuan Y, Xiao Z, Huang J 2015 Nat. Commun. 6 8747Google Scholar

    [17]

    Shao Y C, Yuan Y B, Huang J S 2016 Nat. Energy 1 15001Google Scholar

    [18]

    Kuang C Y, Tang G, Jiu T G, Yang H, Liu H B, Li B R, Luo W N, Li X G, Zhang W J, Lu F S, Fang J F, Li Y L 2015 Nano Lett. 15 2756Google Scholar

    [19]

    Luo D Y, Yang W Q, Wang Z P, Sadhanala A, Hu Q, Su R, Shivanna R, Trindade G F, Watts J F, Xu Z J, Liu T H, Chen K, Ye F J, Wu P, Zhao L C, Wu J, Tu Y G, Zhang Y F, Yang X Y, Zhang W, Friend R H, Gong Q H, Snaith H J, Zhu R 2018 Science 360 1442Google Scholar

    [20]

    Fonash S, Arch J, Cuiffi J, et al. A One-Dimensional Device Simulation Program for the Analysis of Microelectronic and Photonic Structures http://www.emprl.psu.edu/amps[1997-1-1]

    [21]

    Zhang A, Chen Y L, Yan J 2016 Ieee J. Quantum Elect. 52 1600106Google Scholar

    [22]

    Onoda-Yamamuro N, Matsuo T, Suga H 1992 J. Phys. Chem. Solids. 53 935Google Scholar

    [23]

    Laban W A, Etgar L 2013 Energ. Environ Sci. 6 3249Google Scholar

    [24]

    Stoumpos C C, Malliakas C D, Kanatzidis M G 2013 Inorg. Chem. 52 9019Google Scholar

    [25]

    Rode D L 1975 Semiconductors and Semimetals (New York: Academic) pp1–89

    [26]

    Muth J F, Kolbas R M, Sharma A K, Oktabrsky S, Narayan J 1999 J. Appl. Phys. 85 7884Google Scholar

    [27]

    Moormann H, Kohl D, Heiland G 1980 Surf. Sci. 100 302Google Scholar

    [28]

    Hagemark K J, Chacka L C 1975 J. Solid State Chem. 15 261Google Scholar

    [29]

    Kim K J, Park Y R 2001 Appl. Phys. Lett. 78 475Google Scholar

    [30]

    Wojciechowski K, Saliba M, Leijtens T, Abate A, Snaith H J 2014 Energ. Environ. Sci. 7 1142Google Scholar

    [31]

    Liu F, Zhu J, Wei J F, Li Y, Lv M, Yang S F, Zhang B, Yao J X, Dai S Y 2014 Appl. Phys. Lett. 104 253508Google Scholar

    [32]

    Jaffe J E, Kaspar T C, Droubay T C, Varga T, Bowden M E, Exarhos G J 2010 J. Phys. Chem. C 114 9111Google Scholar

    [33]

    Kaiser I, Ernst K, Fischer C H, Konenkamp R, Rost C, Sieber I, Lux-Steiner M C 2001 Sol. Energy Mater. Sol. Cells. 67 89Google Scholar

    [34]

    Pattanasattayavong P, Ndjawa G O N, Zhao K, Chou K W, Yaacobi-Gross N, O’Regan B C, Amassian A, Anthopoulos T D 2013 Chem. Commun. 49 4154Google Scholar

    [35]

    Pattanasattayavong P, Yaacobi-Gross N, Zhao K, Ndjawa G O N, Li J H, Yan F, O’Regan B C, Amassiann A, Anthopoulos T D 2013 Adv. Mater 25 1504Google Scholar

    [36]

    Rao V, Smakula A 1965 J. Appl. Phys. 36 2031Google Scholar

    [37]

    Ratcliff E L, Meyer J, Steirer K X, Armstrong N R, Olson D, Kahn A 2012 Org. Electron. 13 744Google Scholar

    [38]

    Wu H B, Wang L S 1997 J. Chem. Phys. 107 16Google Scholar

    [39]

    Liu M H, Zhou Z J, Zhang P P, Tian Q W, Zhou W H, Kou D X, Wu S X 2016 Opt. Express 24 1349Google Scholar

    [40]

    Rakhshani A E 1991 J. Appl. Phys. 69 2365Google Scholar

    [41]

    Ghijsen J, Tjeng L H, van Elp J, Eskes H, Westerink J, Sawatzky G A 1988 Phys. Rev. B 38 11322Google Scholar

    [42]

    Zuo C T, Ding L M 2015 Small 11 5528Google Scholar

    [43]

    Matsumura H, Fujii A, Kitatani T 1996 Jpn. J. Appl. Phys. 35 5631Google Scholar

    [44]

    Shewchun J, Dubow J, Wilmsen C W, Singh R, Burk D, Wager J F 1979 J. Appl. Phys. 50 2832Google Scholar

    [45]

    Park Y, Choong V, Gao Y, Hsieh B R, Tang C W 1996 Appl. Phys. Lett. 68 2699Google Scholar

    [46]

    Balasubramanian N, Subrahmanyam A 1991 J. Electrochem. Soc. 138 322Google Scholar

    [47]

    Nehate S D, Prakash A, DossMani P, Sundaram, K B 2018 ECS J. Solid State Sc. 7 87

  • [1] Zhang Xiao-Chun, Wang Li-Kun, Shang Wen-Li, Wan Zheng-Hui, Yue Xin, Yang Hua-Yi, Li Ting, Wang Hui. Fabrication of high-performance inverted perovskite solar cells based on dual modification strategy. Acta Physica Sinica, 2024, 73(24): 248401. doi: 10.7498/aps.73.20241238
    [2] Zhang Xing, Liu Yu-Lin, Li Gang, Yan Shao-An, Xiao Yong-Guang, Tang Ming-Hua. Three-dimensional numerical simulation of single event upset effect based on 55 nm DICE latch unit. Acta Physica Sinica, 2024, 73(6): 066103. doi: 10.7498/aps.73.20231564
    [3] Yu Yuan, Xing Ruo-Fei, Du Hui-Tian, Zhou Qian, Fan Ji-Hui, Pang Zhi-Yong, Han Sheng-Hao. Performance of trans perovskite solar cells improved by finely adjusting the particle size of nickel oxide nanoparticles through pH value. Acta Physica Sinica, 2023, 72(1): 018101. doi: 10.7498/aps.72.20221640
    [4] Wang Xue-Zhang, Li Ke-Qun. Liquid-cooled structure design and heat dissipation characteristics analysis of cross-flow channels for lithium batteries. Acta Physica Sinica, 2022, 71(18): 184702. doi: 10.7498/aps.71.20220212
    [5] Shen Shuang-Lin, Zhang Xiao-Kun, Wan Xing-Wen, Zheng Ke-Qing, Ling Yi-Han, Wang Shao-Rong. Study on extremely high temperature gradient at entrance of solid oxide fuel cell by preheating model. Acta Physica Sinica, 2022, 71(16): 164401. doi: 10.7498/aps.71.20220031
    [6] Liu Yue-Li, Zhao Si-Jie, Chen Wen, Zhou Jing. Numerical simulation of thermal and dielectric properties for SiO2/polytetrafluoroethylene dielectric composite. Acta Physica Sinica, 2022, 71(21): 210201. doi: 10.7498/aps.71.20220839
    [7] Wang Jian-Tao, Xiao Wen-Bo, Xia Qing-Gan, Wu Hua-Ming, Li Fan, Huang Le. Influence of back electrode material, structure and thickness on performance of perovskite solar cells. Acta Physica Sinica, 2021, 70(19): 198404. doi: 10.7498/aps.70.20211037
    [8] Ye Xin, Shan Yan-Guang. Numerical simulation of modal evolution and flow field structure of vibrating droplets on hydrophobic surface. Acta Physica Sinica, 2021, 70(14): 144701. doi: 10.7498/aps.70.20210161
    [9] Li Jun-Wei, Wang Zu-Jun, Shi Cheng-Ying, Xue Yuan-Yuan, Ning Hao, Xu Rui, Jiao Qian-Li, Jia Tong-Xuan. Modeling and simulating of radiation effects on the performance degradation of GaInP/GaAs/Ge triple-junction solar cells induced by different energy protons. Acta Physica Sinica, 2020, 69(9): 098802. doi: 10.7498/aps.69.20191878
    [10] Zhang Ya-Ju, Xie Zhong-Shuai, Zheng Hai-Wu, Yuan Guo-Liang. Optimization of electrical and photovoltaic properties of Au-BiFeO3 nanocomposite films. Acta Physica Sinica, 2020, 69(12): 127709. doi: 10.7498/aps.69.20200309
    [11] Pan Hong-Ying, Quan Zhi-Jue. Effects of p-layer hole concentration and thickness on performance of p-i-n InGaN homojunction solar cells. Acta Physica Sinica, 2019, 68(19): 196103. doi: 10.7498/aps.68.20191042
    [12] Zhang Ao, Chen Yun-Lin, Yan Jun, Zhang Chun-Xiu. Effects of organic cations on performance of halide perovskite solar cell. Acta Physica Sinica, 2018, 67(10): 106701. doi: 10.7498/aps.67.20180236
    [13] Li Fang, Zhao Gang, Liu Wei-Xin, Zhang Shu, Bi Hong-Shi. Numerical simulation and experimental study on drag reduction performance of bionic jet hole shape. Acta Physica Sinica, 2015, 64(3): 034703. doi: 10.7498/aps.64.034703
    [14] Jia Yu-Kun, Yang Shi-E, Guo Qiao-Neng, Chen Yong-Sheng, Gao Xiao-Yong, Gu Jin-Hua, Lu Jing-Xiao. Optimal design of light trapping structure for broadband absorption enhancement in amorphous silicon solar cell. Acta Physica Sinica, 2013, 62(24): 247801. doi: 10.7498/aps.62.247801
    [15] Zhao La-La, Liu Chu-Sheng, Yan Jun-Xia, Jiang Xiao-Wei, Zhu Yan. Numerical simulation of particle segregation behavior in different vibration modes. Acta Physica Sinica, 2010, 59(4): 2582-2588. doi: 10.7498/aps.59.2582
    [16] Zhuo Shi-Chuang, Yan Chang-Chun. Simulation study on a negative refractive index material with high transmission at 748 THz——The violet end of the visible region. Acta Physica Sinica, 2010, 59(1): 360-364. doi: 10.7498/aps.59.360
    [17] Cai Li-Bing, Wang Jian-Guo. Numerical simulation of the breakdown on HPM dielectric surface. Acta Physica Sinica, 2009, 58(5): 3268-3273. doi: 10.7498/aps.58.3268
    [18] Ren Huai-Hui, Li Xu-Dong. 3D material microstructures design and numerical simulation. Acta Physica Sinica, 2009, 58(6): 4041-4052. doi: 10.7498/aps.58.4041
    [19] Wang Ke-Sheng, Liu Quan-Kun, Zhang De-Yuan. Numerical simulation of the tribological behaviour of the serial coatings of D2 steel. Acta Physica Sinica, 2009, 58(13): 89-S93. doi: 10.7498/aps.58.89
    [20] Hu Yue, Rao Hai-Bo, Li Jun-Fei. Numerical model of ITO /organic semiconductor/metal organic light emitting device. Acta Physica Sinica, 2008, 57(9): 5928-5932. doi: 10.7498/aps.57.5928
Metrics
  • Abstract views:  9389
  • PDF Downloads:  181
  • Cited By: 0
Publishing process
  • Received Date:  13 January 2020
  • Accepted Date:  06 February 2020
  • Published Online:  05 June 2020

/

返回文章
返回
Baidu
map