搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电场作用下CaS的分子结构和电子光谱

何建勇 隆正文 龙超云 蔡绍洪

引用本文:
Citation:

电场作用下CaS的分子结构和电子光谱

何建勇, 隆正文, 龙超云, 蔡绍洪

Molecular structure and electronic spectrum of CaS under electric fields

He Jian-Yong, Long Zheng-Wen, Long Chao-Yun, Cai Shao-Hong
PDF
导出引用
  • 以6-311++G(d, p)为基组,采用密度泛函的B3LYP方法优化得到不同外电场(-003—0045 a.u.)下CaS分子的基态结构参数、电偶极矩μ、电荷分布、HOMO能级、LUMO能级、能隙、红外光谱和谐振频率等. 结果表明,随着正向电场的增加,分子结构与外电场有着强烈的依赖关系,且对电场方向的依赖呈现出不对称性, 基态键长和分子偶极矩μ先减小后增大,在F=002 a.u.时,键长Re取最小值022
    The method B3LYP of the density functional theory (DFT) at 6-311++G(d, p) level has been used to obtain equilibrium structure of the ground state of CaS molecule, optimized parameters, dipole moment, charge distribution, HOMO energy level, LUMO energy level, energy gaps, infrared spectrum and harmonic frequency under different external electric fields ranging from -0.03 a.u. to 0.045 a.u. The results shows that with increasing the external electric field, the molecular geometry becomes strongly dependent on the field strength and behaves asymmetrically to the direction of the applied electric field. At the same time, the bond length and dipole moment μ of the ground state are changed from decreasing to increasing. At F=0.02 a.u., the minimum of bond length and dipole moment are 0.2289 nm and 1.5969 D. HOMO energy level and LUMO energy level are changed from increasing to decreasing. A decrease of the total energy gaps are found in the process of increasing the external electric field, which tells that the molecule is excited easily under a specific electric field. Excitation energies and oscillator strengths are affected by the external electric field. These results are useful for the study on the electroluminescence of CaS molecule.
    • 基金项目: 国家自然科学基金(批准号:10865003)资助的课题.
    [1]

    [1]Iwamae A, Hishikawa A, Yamanouchi K 2000 J. Phys. B: At Mol. Opt. Phys. 33 223

    [2]

    [2]Ellert C, Corkum P B 1999 Phys. Rev. A 59 R3170

    [3]

    [3]Ellert C, Stapelfeldt H, Constant E 1998 Phil. Trans. R. Soc. Lond. A356 329

    [4]

    [4]Ledingham K W D, Singhal R P, Smith D J 1998 J. Phys. Chem. A 102 3002

    [5]

    [5]Walsh T D G, Strach L, Chin S L 1998 J. Phys. B: At. Mol. Opt. Phys. 31 4853

    [6]

    [6]Ma M Z, Zhu Z H, Chen X J, Xu G L, Zhang Y B, Mao H P, Chen X H 2005 Chin. Phys. 14 1101

    [7]

    [7]Hu S D, Zhang B , Li Z J 2009 Chin. Phys. B 18 315

    [8]

    [8]Huang D H, Wang F H, Min J, Zhu Z H 2009 Acta Phys. Sin. 58 3052 (in Chinese)[黄多辉、王藩侯、闵军、朱正和 2009 58 3052]

    [9]

    [9]Xu G L, Lü W J, Liu Y F, Zhu Z L, Zhang X Z, Sun J F 2009 Acta Phys. Sin. 58 3058 (in Chinese)[徐国亮、吕文静、刘玉芳、朱遵略、张现周、孙金峰 2009 58 3058]

    [10]

    ]Zhang X Y, Liu Q S, Lu L P, Wang X C, Bai Z H 2005 J. In. Chem 21 665(in Chinese)[张希艳、刘全生、卢利平、王晓春、柏朝辉2005 无机化学学报21 665]

    [11]

    ]Haworth N L, Sullivan M B, Wilson A K 2005 J. Phys. Chem. A 109 9156

    [12]

    ]Qiu K R, Lindqvist O, Mattisson T 1998 Ind. Eng. Chem. Res. 37 923

    [13]

    ]Ozawa S, Morita Y, Huang L, Matsuda H 2000 Energy. Fuels 14 138

    [14]

    ]Wu S J, Uddin M A, Sasaoka E J 2005 Energy. Fuels 19 864

    [15]

    ]Brooks M W, Lynn S 1997 Ind. Eng. Chem. Res. 36 4236

    [16]

    ]Frisch M J, Trucks G W, Bernhard S H 2003 Gaussian03, Revision B03 (Pittsburgh PA: Gaussian Inc.)

    [17]

    ]Huber K P, Herzberg G 1978 Molecular Spectra and Molecular Structure IV Constants of Diatomic Molecules(New York: Van Nostrand Reinhold Company) p126

    [18]

    ]Feng J K, Li J, Wang Z Z 1990 Int. J .Quantum .Chem. 37 599

  • [1]

    [1]Iwamae A, Hishikawa A, Yamanouchi K 2000 J. Phys. B: At Mol. Opt. Phys. 33 223

    [2]

    [2]Ellert C, Corkum P B 1999 Phys. Rev. A 59 R3170

    [3]

    [3]Ellert C, Stapelfeldt H, Constant E 1998 Phil. Trans. R. Soc. Lond. A356 329

    [4]

    [4]Ledingham K W D, Singhal R P, Smith D J 1998 J. Phys. Chem. A 102 3002

    [5]

    [5]Walsh T D G, Strach L, Chin S L 1998 J. Phys. B: At. Mol. Opt. Phys. 31 4853

    [6]

    [6]Ma M Z, Zhu Z H, Chen X J, Xu G L, Zhang Y B, Mao H P, Chen X H 2005 Chin. Phys. 14 1101

    [7]

    [7]Hu S D, Zhang B , Li Z J 2009 Chin. Phys. B 18 315

    [8]

    [8]Huang D H, Wang F H, Min J, Zhu Z H 2009 Acta Phys. Sin. 58 3052 (in Chinese)[黄多辉、王藩侯、闵军、朱正和 2009 58 3052]

    [9]

    [9]Xu G L, Lü W J, Liu Y F, Zhu Z L, Zhang X Z, Sun J F 2009 Acta Phys. Sin. 58 3058 (in Chinese)[徐国亮、吕文静、刘玉芳、朱遵略、张现周、孙金峰 2009 58 3058]

    [10]

    ]Zhang X Y, Liu Q S, Lu L P, Wang X C, Bai Z H 2005 J. In. Chem 21 665(in Chinese)[张希艳、刘全生、卢利平、王晓春、柏朝辉2005 无机化学学报21 665]

    [11]

    ]Haworth N L, Sullivan M B, Wilson A K 2005 J. Phys. Chem. A 109 9156

    [12]

    ]Qiu K R, Lindqvist O, Mattisson T 1998 Ind. Eng. Chem. Res. 37 923

    [13]

    ]Ozawa S, Morita Y, Huang L, Matsuda H 2000 Energy. Fuels 14 138

    [14]

    ]Wu S J, Uddin M A, Sasaoka E J 2005 Energy. Fuels 19 864

    [15]

    ]Brooks M W, Lynn S 1997 Ind. Eng. Chem. Res. 36 4236

    [16]

    ]Frisch M J, Trucks G W, Bernhard S H 2003 Gaussian03, Revision B03 (Pittsburgh PA: Gaussian Inc.)

    [17]

    ]Huber K P, Herzberg G 1978 Molecular Spectra and Molecular Structure IV Constants of Diatomic Molecules(New York: Van Nostrand Reinhold Company) p126

    [18]

    ]Feng J K, Li J, Wang Z Z 1990 Int. J .Quantum .Chem. 37 599

  • [1] 齐凯, 朱星光, 王军, 夏国栋. 外电场作用下纳米结构表面的固-液界面传热特性.  , 2024, 73(15): 156801. doi: 10.7498/aps.73.20240698
    [2] 崔洋, 李静, 张林. 外加横向电场作用下石墨烯纳米带电子结构的密度泛函紧束缚计算.  , 2021, 70(5): 053101. doi: 10.7498/aps.70.20201619
    [3] 李世雄, 陈德良, 张正平, 隆正文, 秦水介. 环形C18在外电场下的基态性质和激发特性.  , 2020, 69(10): 103101. doi: 10.7498/aps.69.20200268
    [4] 李亚莎, 孙林翔, 周筱, 陈凯, 汪辉耀. 基于密度泛函理论的外电场下C5F10O的结构及其激发特性.  , 2020, 69(1): 013101. doi: 10.7498/aps.69.20191455
    [5] 杜建宾, 冯志芳, 张倩, 韩丽君, 唐延林, 李奇峰. 外电场作用下MoS2的分子结构和电子光谱.  , 2019, 68(17): 173101. doi: 10.7498/aps.68.20190781
    [6] 李亚莎, 谢云龙, 黄太焕, 徐程, 刘国成. 基于密度泛函理论的外电场下盐交联聚乙烯分子的结构及其特性.  , 2018, 67(18): 183101. doi: 10.7498/aps.67.20180808
    [7] 杨涛, 刘代俊, 陈建钧. 外电场下二氧化硫的分子结构及其特性.  , 2016, 65(5): 053101. doi: 10.7498/aps.65.053101
    [8] 李世雄, 吴永刚, 令狐荣锋, 孙光宇, 张正平, 秦水介. ZnSe在外电场下的基态性质和激发特性研究.  , 2015, 64(4): 043101. doi: 10.7498/aps.64.043101
    [9] 曹欣伟, 任杨, 刘慧, 李姝丽. 强外电场作用下BN分子的结构与激发特性.  , 2014, 63(4): 043101. doi: 10.7498/aps.63.043101
    [10] 李涛, 唐延林, 凌智钢, 李玉鹏, 隆正文. 外电场对对硝基氯苯分子结构与电子光谱影响的研究.  , 2013, 62(10): 103103. doi: 10.7498/aps.62.103103
    [11] 王藩侯, 黄多辉, 杨俊升. SnSe分子外场下的基态性质和激发态性质.  , 2013, 62(7): 073102. doi: 10.7498/aps.62.073102
    [12] 安跃华, 熊必涛, 邢云, 申婧翔, 李培刚, 朱志艳, 唐为华. 外电场作用下ZnO分子的结构特性研究.  , 2013, 62(7): 073103. doi: 10.7498/aps.62.073103
    [13] 杜建宾, 唐延林, 隆正文. 外电场作用下的五氯酚分子结构和电子光谱的研究.  , 2012, 61(15): 153101. doi: 10.7498/aps.61.153101
    [14] 周梅, 赵德刚. 结构参数对p-i-n结构InGaN太阳能电池性能的影响及机理.  , 2012, 61(16): 168402. doi: 10.7498/aps.61.168402
    [15] 徐国亮, 夏要争, 刘雪峰, 张现周, 刘玉芳. 外电场作用下TiO光激发特性研究.  , 2010, 59(11): 7762-7768. doi: 10.7498/aps.59.7762
    [16] 徐国亮, 刘雪峰, 夏要争, 张现周, 刘玉芳. 外电场作用下Si2O分子的激发特性.  , 2010, 59(11): 7756-7761. doi: 10.7498/aps.59.7756
    [17] 周业宏, 蔡绍洪. 氯乙烯在外电场下的激发态结构研究.  , 2010, 59(11): 7749-7755. doi: 10.7498/aps.59.7749
    [18] 徐国亮, 吕文静, 刘玉芳, 朱遵略, 张现周, 孙金锋. 外电场作用下二氧化硅分子的光激发特性研究.  , 2009, 58(5): 3058-3063. doi: 10.7498/aps.58.3058
    [19] 黄多辉, 王藩侯, 闵军, 朱正和. 外电场作用下MgO分子的特性研究.  , 2009, 58(5): 3052-3057. doi: 10.7498/aps.58.3052
    [20] 徐国亮, 刘玉芳, 孙金锋, 张现周, 朱正和. 外电场作用下SiO电子结构特性研究.  , 2007, 56(10): 5704-5708. doi: 10.7498/aps.56.5704
计量
  • 文章访问数:  8900
  • PDF下载量:  1144
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-05-28
  • 修回日期:  2009-06-17
  • 刊出日期:  2010-03-15

/

返回文章
返回
Baidu
map