Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Fluorescence resonance energy transfer in a aqueous system of CdTe quantum dots and Rhodamine B with two-photon excitation

Li Mu-Ye Li Fang Wei Lai He Zhi-Cong Zhang Jun-Pei Han Jun-Bo Lu Pei-Xiang

Citation:

Fluorescence resonance energy transfer in a aqueous system of CdTe quantum dots and Rhodamine B with two-photon excitation

Li Mu-Ye, Li Fang, Wei Lai, He Zhi-Cong, Zhang Jun-Pei, Han Jun-Bo, Lu Pei-Xiang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Fluorescence resonance energy transfer (FRET) is non-radiation energy transfer that occurs between a donor (D) molecule in an excited state and an acceptor (A) molecule in a ground state by dipole-dipole interactions. The efficiency of FRET is dependent on the extent of spectral overlap between the donor photoluminescence peak and the absorption spectrum of acceptor, the quantum yield of the donor, and the distance between the donor and acceptor molecules. Currently, FRET is commonly used for determining the metal ion, analyzing the protein, biological molecular fluorescence probe, etc. In this study, the FRET between CdTe quantum dots (QDs) with different sizes and Rhodamine B (RhB) in aqueous solution is investigated by using the time-resolved fluorescence test system under two-photon excitation. In this two-photon FRET aqueous system, QD is used as donor while RhB as acceptor. The time resolved two-photon photoluminescence and fluorescence lifetime measurements are performed for analyzing the two-photon-excited luminescence by using a titanium sapphire femtosecond laser with a wavelength of 800 nm, pulse width of 130 fs, repetition frequency of 76 MHz, with the power fixed at 500 mW. The fluorescence spectrum is measured by fluorescence spectrometer and the fluorescence decay curves are recorded by single photon counter. Besides, the steady state photoluminescence is also studied with a JASCO FP-6500 Fluorescence Spectrometer. The result shows that with the increase of spectral overlap of the CdTe emission spectrum and the Rhodamine B absorption spectrum, the FRET efficiency of the QDs-RhB system becomes higher. Specifically, the fluorescence intensity of QDs decreases and the lifetime of QDs becomes shorter while RhB shows the opposite tendency. By means of the Förster theory of energy transfer, the spectral overlap integral J(λ), Foster radius R0 and the FRET efficiency E are calculated and the FRET characteristics of QD-RhB system is characterized. Theoretical analysis reveals that the physical source is the increase of the sample’s Forster radius. Moreover, the relationship between the ratio of acceptor/donor concentration and the FRET efficiency is investigated experimentally. When the ratio of acceptor/donor concentration increases, the lifetime of QDs turns shorter, and the FRET efficiency of the QDs-RhB system becomes higher. The two-photon excited FRET efficiency can reach 40.1% when the concentration of RhB is 3.0×10-5 mol·L-1. This study shows a brighter future in biological and optoelectronic applications.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11204222), the Natural Science Foundation of Hubei Province, China (Grant Nos. 2013CFB316, 2014CFB793).
    [1]

    Bruchez M, Moronne M, Gin P, Weiss S, Alivisatos A P 1998 Science 281 2013

    [2]

    Xu W B, Wang Y X, Xu R H, Xu F H, Zhang G X, Liang S, Yin D Z 2007 J. Funct. Mater. 38 1287 (in Chinese) [徐万帮, 汪勇先, 许荣辉, 许凤华, 张国欣, 梁胜, 尹端芷 2007 功能材料 38 1287]

    [3]

    Liu H M, Yang C H, Liu X, Zhang J Q, Shi Y L 2013 Acta Phys. Sin. 62 454 (in Chinese) [刘红梅, 杨春花, 刘鑫, 张建奇, 石云龙 2013 62 454]

    [4]

    Cheng C, Zhang H 2006 Acta Phys. Sin. 55 4139 (in Chinese) [程成, 张航 2006 55 4139]

    [5]

    Qiu L, Zhang K, Li Z Y 2013 Chin. Phys. B 22 094207

    [6]

    Jiang T T, Shao W J, Yin N Q, Liu L, Song Jiang L Q, Zhu L X, Xu X L 2014 Chin. Phys. B 23 086102

    [7]

    Gao M Y, Kirstein S, Mohwald H, Rogach A L, Kornowski A, Eychmuller A, Weller H 1998 J. Phys. Chem. B 102 8360

    [8]

    Maestro L M, Ramirez-Hernandez J E, Bogdan N, Capobianco J A, Vetrone F, Sole J G, Jaque D 2012 Nanoscale 4 298

    [9]

    Li F, He Z C, Li M Y, Zhang J P, Han J B, Lu P X 2014 Mater. Lett. 132 263

    [10]

    Lakowicz J R 2006 Principles of Fluorescence Spectroscopy (New York: Springer) pp445-449

    [11]

    He Y T, Xu Z, Zhao S L, Liu Z M, Gao S, Xu X R 2014 Acta Phys. Sin. 63 177301 (in Chinese) [何月娣, 徐征, 赵谡玲, 刘志民, 高松, 徐叙瑢 2014 63 177301]

    [12]

    Wu S H, Li W L, Chen Z, Li S B, Wang X H, Wei X B 2015 Chin. Phys. B 24 028505

    [13]

    Li J, Mei F, Li W Y, He X W, Zhang Y K 2008 Spectrochim. Acta Part A 70 811

    [14]

    Liu Y L, L X, Zhao Y, Chen M L, Liu J, Wang P, Guo W 2012 Dyes. Pigm. 92 909

    [15]

    Ge S G, Lu J J, Yan M, Yu F, Yu J H, Sun X J 2011 Dyes. Pigm. 91 304

    [16]

    Tao H L, Li S H, Li J P 2012 Chin. J. Anal. Chem. 40 224

    [17]

    Bhuvaneswari J, Fathima A K, Rajagopal S 2012 J. Photochem. Photobiol. A 227 38

    [18]

    Aye-Han N N, Ni Q, Zhang J 2009 Curr. Opin. Chem. Biol. 13 392

    [19]

    He L F, Tang H X, Wang K M, Tan W H, Liu B, Meng X X, Li J, Wang W 2006 Acta Chim. Sin. 64 1116 (in Chinese) [何丽芳, 唐红星, 王柯敏, 谭蔚泓, 刘斌, 孟祥贤, 李军, 王炜 2006 化学学报 64 1116]

    [20]

    Gaponik N, Talapin D V, Rogach A L, Hoppe K, Shevchenko E V, Kornowski A, Eychmuller A, Weller H 2002 J. Phys. Chem. B 106 7177

    [21]

    Pu S C, Yang M J, Hsu C C, Lai C W, Hsieh C C, Lin S H, Cheng Y M, Chou P T 2006 Small 2 1308

    [22]

    Xu C, Webb Watt W 1996 J. Opt. Soc. Am. B 13 481

    [23]

    Magde D, Rojas G E, Seybold P G 1999 Photochem. Photobiol. 70 737

  • [1]

    Bruchez M, Moronne M, Gin P, Weiss S, Alivisatos A P 1998 Science 281 2013

    [2]

    Xu W B, Wang Y X, Xu R H, Xu F H, Zhang G X, Liang S, Yin D Z 2007 J. Funct. Mater. 38 1287 (in Chinese) [徐万帮, 汪勇先, 许荣辉, 许凤华, 张国欣, 梁胜, 尹端芷 2007 功能材料 38 1287]

    [3]

    Liu H M, Yang C H, Liu X, Zhang J Q, Shi Y L 2013 Acta Phys. Sin. 62 454 (in Chinese) [刘红梅, 杨春花, 刘鑫, 张建奇, 石云龙 2013 62 454]

    [4]

    Cheng C, Zhang H 2006 Acta Phys. Sin. 55 4139 (in Chinese) [程成, 张航 2006 55 4139]

    [5]

    Qiu L, Zhang K, Li Z Y 2013 Chin. Phys. B 22 094207

    [6]

    Jiang T T, Shao W J, Yin N Q, Liu L, Song Jiang L Q, Zhu L X, Xu X L 2014 Chin. Phys. B 23 086102

    [7]

    Gao M Y, Kirstein S, Mohwald H, Rogach A L, Kornowski A, Eychmuller A, Weller H 1998 J. Phys. Chem. B 102 8360

    [8]

    Maestro L M, Ramirez-Hernandez J E, Bogdan N, Capobianco J A, Vetrone F, Sole J G, Jaque D 2012 Nanoscale 4 298

    [9]

    Li F, He Z C, Li M Y, Zhang J P, Han J B, Lu P X 2014 Mater. Lett. 132 263

    [10]

    Lakowicz J R 2006 Principles of Fluorescence Spectroscopy (New York: Springer) pp445-449

    [11]

    He Y T, Xu Z, Zhao S L, Liu Z M, Gao S, Xu X R 2014 Acta Phys. Sin. 63 177301 (in Chinese) [何月娣, 徐征, 赵谡玲, 刘志民, 高松, 徐叙瑢 2014 63 177301]

    [12]

    Wu S H, Li W L, Chen Z, Li S B, Wang X H, Wei X B 2015 Chin. Phys. B 24 028505

    [13]

    Li J, Mei F, Li W Y, He X W, Zhang Y K 2008 Spectrochim. Acta Part A 70 811

    [14]

    Liu Y L, L X, Zhao Y, Chen M L, Liu J, Wang P, Guo W 2012 Dyes. Pigm. 92 909

    [15]

    Ge S G, Lu J J, Yan M, Yu F, Yu J H, Sun X J 2011 Dyes. Pigm. 91 304

    [16]

    Tao H L, Li S H, Li J P 2012 Chin. J. Anal. Chem. 40 224

    [17]

    Bhuvaneswari J, Fathima A K, Rajagopal S 2012 J. Photochem. Photobiol. A 227 38

    [18]

    Aye-Han N N, Ni Q, Zhang J 2009 Curr. Opin. Chem. Biol. 13 392

    [19]

    He L F, Tang H X, Wang K M, Tan W H, Liu B, Meng X X, Li J, Wang W 2006 Acta Chim. Sin. 64 1116 (in Chinese) [何丽芳, 唐红星, 王柯敏, 谭蔚泓, 刘斌, 孟祥贤, 李军, 王炜 2006 化学学报 64 1116]

    [20]

    Gaponik N, Talapin D V, Rogach A L, Hoppe K, Shevchenko E V, Kornowski A, Eychmuller A, Weller H 2002 J. Phys. Chem. B 106 7177

    [21]

    Pu S C, Yang M J, Hsu C C, Lai C W, Hsieh C C, Lin S H, Cheng Y M, Chou P T 2006 Small 2 1308

    [22]

    Xu C, Webb Watt W 1996 J. Opt. Soc. Am. B 13 481

    [23]

    Magde D, Rojas G E, Seybold P G 1999 Photochem. Photobiol. 70 737

  • [1] Qin Ya-Qiang, Chen Rui-Yun, Shi Ying, Zhou Hai-Tao, Zhang Guo-Feng, Qin Cheng-Bing, Gao Yan, Xiao Lian-Tuan, Jia Suo-Tang. The role of chain conformation in energy transfer properties of single conjugated polymer molecule. Acta Physica Sinica, 2017, 66(24): 248201. doi: 10.7498/aps.66.248201
    [2] Wang Jian-Long, Ding Fang, Zhu Xiao-Dong. Optical properties of direct current glow discharge plasmas at high pressures. Acta Physica Sinica, 2015, 64(4): 045206. doi: 10.7498/aps.64.045206
    [3] Ning Cheng, Feng Zhi-Xing, Xue Chuang. Basic characteristics of kinetic energy transfer in the dynamic hohlraums of Z-pinch. Acta Physica Sinica, 2014, 63(12): 125208. doi: 10.7498/aps.63.125208
    [4] He Yue-Di, Xu Zheng, Zhao Su-Ling, Liu Zhi-Min, Gao Song, Xu Xu-Rong. Electroluminescent energy transfer of hybrid quantum dotsdevice. Acta Physica Sinica, 2014, 63(17): 177301. doi: 10.7498/aps.63.177301
    [5] Peng Na-Na, Huo Yan-Yan, Zhou Kan, Jia Xin, Pan Jia, Sun Zhen-Rong, Jia Tian-Qing. The development of femtosecond laser-induced periodic nanostructures and their optical properties. Acta Physica Sinica, 2013, 62(9): 094201. doi: 10.7498/aps.62.094201
    [6] Du Yun, Lu Nian-Peng, Yang Hu, Ye Man-Ping, Li Chao-Rong. Electrical, optical properties and structure characterization of In-doped copper nitride thin film. Acta Physica Sinica, 2013, 62(11): 118104. doi: 10.7498/aps.62.118104
    [7] Zhang Wei, Chen Yu, Fu Jing, Chen Fei-Fei, Shen Xiang, Dai Shi-Xun, Lin Chang-Gui, Xu Tie-Feng. Study on fabrication and optical properties of Ge-Sb-Se thin films. Acta Physica Sinica, 2012, 61(5): 056801. doi: 10.7498/aps.61.056801
    [8] Yuan Wen-Jia, Zhang Yue-Guang, Shen Wei-Dong, Ma Qun, Liu Xu. Characteristics of Nb2O5 thin films deposited by ion beam sputtering. Acta Physica Sinica, 2011, 60(4): 047803. doi: 10.7498/aps.60.047803
    [9] Bao Shan-Yong, Dong Wu-Jun, Xu Xing, Luan Tian-Bao, Li Jie, Zhang Qing-Yu. Influence of oxygen partial pressure on the crystal quality and optical properties of Mg-doped ZnO films. Acta Physica Sinica, 2011, 60(3): 036804. doi: 10.7498/aps.60.036804
    [10] Nie Qiu-Hua, Wang Guo-Xiang, Wang Xun-Si, Xu Tie-Feng, Dai Shi-Xun, Shen Xiang. Effect of Ga on optical properties of novel Te-based far infrared transmitting chalcogenide glasses. Acta Physica Sinica, 2010, 59(11): 7949-7955. doi: 10.7498/aps.59.7949
    [11] Liang Zhong-Zhu, Liang Jing-Qiu, Zheng Na, Jia Xiao-Peng, Li Gui-Ju. Optical absorbance of diamond doped with nitrogen and the nitrogen concentration analysis. Acta Physica Sinica, 2009, 58(11): 8039-8043. doi: 10.7498/aps.58.8039
    [12] Liang Zhong-Zhu, Liang Jing-Qiu, Zheng Na, Jiang Zhi-Gang, Wang Wei-Biao, Fang Wei. Study on the compound film of diamond for absorbing radiation. Acta Physica Sinica, 2009, 58(11): 8033-8038. doi: 10.7498/aps.58.8033
    [13] Wu Chun-Hong, Liu Peng-Yi, Hou Lin-Tao, Li Yan-Wu. The energy transfer in phosphorescent dye PtOEP doped organic molecule Alq. Acta Physica Sinica, 2008, 57(11): 7317-7321. doi: 10.7498/aps.57.7317
    [14] Xu Deng, Ye Li-Hua, Cui Yi-Ping, Xi Jun, Li Li, Wang Qiong. Study of photoluminescence and energy transfer properties of an organic dye salt doped thin films. Acta Physica Sinica, 2008, 57(5): 3267-3270. doi: 10.7498/aps.57.3267
    [15] Song Shu-Fang, Zhao De-Wei, Xu Zheng, Xu Xu-Rong. Energy transfer in organic quantum well structures. Acta Physica Sinica, 2007, 56(6): 3499-3503. doi: 10.7498/aps.56.3499
    [16] Zhang Peng, Zhou Yin-Hua, Liu Xiu-Fen, Tian Wen-Jing, Li Min, Zhang Guo. Study on the energy transfer and luminescent properties in PVK:DBVP blend system. Acta Physica Sinica, 2006, 55(10): 5494-5498. doi: 10.7498/aps.55.5494
    [17] Luo Xiang-Dong, Sun Bing-Hua, Xu Zhong-Ying. Optical properties of alloy states in GaNxAs1-x(x<0.01). Acta Physica Sinica, 2005, 54(5): 2385-2388. doi: 10.7498/aps.54.2385
    [18] Xu Hai-Jun, Fu Xiao-Nan, Sun Xin-Rui, Li Xin-Jian. Investigations on the structural and optical properties of silicon nanoporous pillar array. Acta Physica Sinica, 2005, 54(5): 2352-2357. doi: 10.7498/aps.54.2352
    [19] Guo Shao-Feng, Lu Qi-Sheng, Cheng Xiang-Ai, Zhou Ping, Deng Shao-Yong, Yin Yan. Influence of Stokes component in reflected light on stimulated Brillouin scattering process. Acta Physica Sinica, 2004, 53(6): 1831-1835. doi: 10.7498/aps.53.1831
    [20] Feng Zhi-Fang, Wang Yi-Quan, Xu Xing-Sheng, Jiang Shao-Lin, Hao Wei, Cheng Bing-Ying, Zhang Dao-Zhong. Energy transfer between two continuous channels in photonic crystals. Acta Physica Sinica, 2004, 53(1): 62-65. doi: 10.7498/aps.53.62
Metrics
  • Abstract views:  6774
  • PDF Downloads:  970
  • Cited By: 0
Publishing process
  • Received Date:  28 October 2014
  • Accepted Date:  28 December 2014
  • Published Online:  05 May 2015

/

返回文章
返回
Baidu
map