-
采用时间分辨荧光光谱技术研究了在双光子激发下不同尺寸的量子点与罗丹明B 之间的荧光共振能量转移. 研究结果表明, 在800 nm的双光子激发条件下, 体系间能量转移效率随着供体吸收光谱与受体荧光光谱的光谱重叠程度增加而增加; 理论分析表明, 供体和受体间的Förster半径增加是导致其双光子能量转移效率增大的物理原因. 同时, 研究了罗丹明B浓度对荧光共振能量转移效率的影响. 研究结果表明, 量子点的荧光寿命随着罗丹明B浓度的增加而减小; 量子点与罗丹明B之间的荧光共振能量转移效率随着罗丹明B浓度的增加而增加; 当罗丹明B浓度为3.0×10-5 mol·L-1时, 双光子荧光共振能量转移效率为40.1%.Fluorescence resonance energy transfer (FRET) is non-radiation energy transfer that occurs between a donor (D) molecule in an excited state and an acceptor (A) molecule in a ground state by dipole-dipole interactions. The efficiency of FRET is dependent on the extent of spectral overlap between the donor photoluminescence peak and the absorption spectrum of acceptor, the quantum yield of the donor, and the distance between the donor and acceptor molecules. Currently, FRET is commonly used for determining the metal ion, analyzing the protein, biological molecular fluorescence probe, etc. In this study, the FRET between CdTe quantum dots (QDs) with different sizes and Rhodamine B (RhB) in aqueous solution is investigated by using the time-resolved fluorescence test system under two-photon excitation. In this two-photon FRET aqueous system, QD is used as donor while RhB as acceptor. The time resolved two-photon photoluminescence and fluorescence lifetime measurements are performed for analyzing the two-photon-excited luminescence by using a titanium sapphire femtosecond laser with a wavelength of 800 nm, pulse width of 130 fs, repetition frequency of 76 MHz, with the power fixed at 500 mW. The fluorescence spectrum is measured by fluorescence spectrometer and the fluorescence decay curves are recorded by single photon counter. Besides, the steady state photoluminescence is also studied with a JASCO FP-6500 Fluorescence Spectrometer. The result shows that with the increase of spectral overlap of the CdTe emission spectrum and the Rhodamine B absorption spectrum, the FRET efficiency of the QDs-RhB system becomes higher. Specifically, the fluorescence intensity of QDs decreases and the lifetime of QDs becomes shorter while RhB shows the opposite tendency. By means of the Förster theory of energy transfer, the spectral overlap integral J(λ), Foster radius R0 and the FRET efficiency E are calculated and the FRET characteristics of QD-RhB system is characterized. Theoretical analysis reveals that the physical source is the increase of the sample’s Forster radius. Moreover, the relationship between the ratio of acceptor/donor concentration and the FRET efficiency is investigated experimentally. When the ratio of acceptor/donor concentration increases, the lifetime of QDs turns shorter, and the FRET efficiency of the QDs-RhB system becomes higher. The two-photon excited FRET efficiency can reach 40.1% when the concentration of RhB is 3.0×10-5 mol·L-1. This study shows a brighter future in biological and optoelectronic applications.
-
Keywords:
- energy transfer /
- multiphoton processes /
- optical materials /
- optical properties
[1] Bruchez M, Moronne M, Gin P, Weiss S, Alivisatos A P 1998 Science 281 2013
[2] Xu W B, Wang Y X, Xu R H, Xu F H, Zhang G X, Liang S, Yin D Z 2007 J. Funct. Mater. 38 1287 (in Chinese) [徐万帮, 汪勇先, 许荣辉, 许凤华, 张国欣, 梁胜, 尹端芷 2007 功能材料 38 1287]
[3] Liu H M, Yang C H, Liu X, Zhang J Q, Shi Y L 2013 Acta Phys. Sin. 62 454 (in Chinese) [刘红梅, 杨春花, 刘鑫, 张建奇, 石云龙 2013 62 454]
[4] Cheng C, Zhang H 2006 Acta Phys. Sin. 55 4139 (in Chinese) [程成, 张航 2006 55 4139]
[5] Qiu L, Zhang K, Li Z Y 2013 Chin. Phys. B 22 094207
[6] Jiang T T, Shao W J, Yin N Q, Liu L, Song Jiang L Q, Zhu L X, Xu X L 2014 Chin. Phys. B 23 086102
[7] Gao M Y, Kirstein S, Mohwald H, Rogach A L, Kornowski A, Eychmuller A, Weller H 1998 J. Phys. Chem. B 102 8360
[8] Maestro L M, Ramirez-Hernandez J E, Bogdan N, Capobianco J A, Vetrone F, Sole J G, Jaque D 2012 Nanoscale 4 298
[9] Li F, He Z C, Li M Y, Zhang J P, Han J B, Lu P X 2014 Mater. Lett. 132 263
[10] Lakowicz J R 2006 Principles of Fluorescence Spectroscopy (New York: Springer) pp445-449
[11] He Y T, Xu Z, Zhao S L, Liu Z M, Gao S, Xu X R 2014 Acta Phys. Sin. 63 177301 (in Chinese) [何月娣, 徐征, 赵谡玲, 刘志民, 高松, 徐叙瑢 2014 63 177301]
[12] Wu S H, Li W L, Chen Z, Li S B, Wang X H, Wei X B 2015 Chin. Phys. B 24 028505
[13] Li J, Mei F, Li W Y, He X W, Zhang Y K 2008 Spectrochim. Acta Part A 70 811
[14] Liu Y L, L X, Zhao Y, Chen M L, Liu J, Wang P, Guo W 2012 Dyes. Pigm. 92 909
[15] Ge S G, Lu J J, Yan M, Yu F, Yu J H, Sun X J 2011 Dyes. Pigm. 91 304
[16] Tao H L, Li S H, Li J P 2012 Chin. J. Anal. Chem. 40 224
[17] Bhuvaneswari J, Fathima A K, Rajagopal S 2012 J. Photochem. Photobiol. A 227 38
[18] Aye-Han N N, Ni Q, Zhang J 2009 Curr. Opin. Chem. Biol. 13 392
[19] He L F, Tang H X, Wang K M, Tan W H, Liu B, Meng X X, Li J, Wang W 2006 Acta Chim. Sin. 64 1116 (in Chinese) [何丽芳, 唐红星, 王柯敏, 谭蔚泓, 刘斌, 孟祥贤, 李军, 王炜 2006 化学学报 64 1116]
[20] Gaponik N, Talapin D V, Rogach A L, Hoppe K, Shevchenko E V, Kornowski A, Eychmuller A, Weller H 2002 J. Phys. Chem. B 106 7177
[21] Pu S C, Yang M J, Hsu C C, Lai C W, Hsieh C C, Lin S H, Cheng Y M, Chou P T 2006 Small 2 1308
[22] Xu C, Webb Watt W 1996 J. Opt. Soc. Am. B 13 481
[23] Magde D, Rojas G E, Seybold P G 1999 Photochem. Photobiol. 70 737
-
[1] Bruchez M, Moronne M, Gin P, Weiss S, Alivisatos A P 1998 Science 281 2013
[2] Xu W B, Wang Y X, Xu R H, Xu F H, Zhang G X, Liang S, Yin D Z 2007 J. Funct. Mater. 38 1287 (in Chinese) [徐万帮, 汪勇先, 许荣辉, 许凤华, 张国欣, 梁胜, 尹端芷 2007 功能材料 38 1287]
[3] Liu H M, Yang C H, Liu X, Zhang J Q, Shi Y L 2013 Acta Phys. Sin. 62 454 (in Chinese) [刘红梅, 杨春花, 刘鑫, 张建奇, 石云龙 2013 62 454]
[4] Cheng C, Zhang H 2006 Acta Phys. Sin. 55 4139 (in Chinese) [程成, 张航 2006 55 4139]
[5] Qiu L, Zhang K, Li Z Y 2013 Chin. Phys. B 22 094207
[6] Jiang T T, Shao W J, Yin N Q, Liu L, Song Jiang L Q, Zhu L X, Xu X L 2014 Chin. Phys. B 23 086102
[7] Gao M Y, Kirstein S, Mohwald H, Rogach A L, Kornowski A, Eychmuller A, Weller H 1998 J. Phys. Chem. B 102 8360
[8] Maestro L M, Ramirez-Hernandez J E, Bogdan N, Capobianco J A, Vetrone F, Sole J G, Jaque D 2012 Nanoscale 4 298
[9] Li F, He Z C, Li M Y, Zhang J P, Han J B, Lu P X 2014 Mater. Lett. 132 263
[10] Lakowicz J R 2006 Principles of Fluorescence Spectroscopy (New York: Springer) pp445-449
[11] He Y T, Xu Z, Zhao S L, Liu Z M, Gao S, Xu X R 2014 Acta Phys. Sin. 63 177301 (in Chinese) [何月娣, 徐征, 赵谡玲, 刘志民, 高松, 徐叙瑢 2014 63 177301]
[12] Wu S H, Li W L, Chen Z, Li S B, Wang X H, Wei X B 2015 Chin. Phys. B 24 028505
[13] Li J, Mei F, Li W Y, He X W, Zhang Y K 2008 Spectrochim. Acta Part A 70 811
[14] Liu Y L, L X, Zhao Y, Chen M L, Liu J, Wang P, Guo W 2012 Dyes. Pigm. 92 909
[15] Ge S G, Lu J J, Yan M, Yu F, Yu J H, Sun X J 2011 Dyes. Pigm. 91 304
[16] Tao H L, Li S H, Li J P 2012 Chin. J. Anal. Chem. 40 224
[17] Bhuvaneswari J, Fathima A K, Rajagopal S 2012 J. Photochem. Photobiol. A 227 38
[18] Aye-Han N N, Ni Q, Zhang J 2009 Curr. Opin. Chem. Biol. 13 392
[19] He L F, Tang H X, Wang K M, Tan W H, Liu B, Meng X X, Li J, Wang W 2006 Acta Chim. Sin. 64 1116 (in Chinese) [何丽芳, 唐红星, 王柯敏, 谭蔚泓, 刘斌, 孟祥贤, 李军, 王炜 2006 化学学报 64 1116]
[20] Gaponik N, Talapin D V, Rogach A L, Hoppe K, Shevchenko E V, Kornowski A, Eychmuller A, Weller H 2002 J. Phys. Chem. B 106 7177
[21] Pu S C, Yang M J, Hsu C C, Lai C W, Hsieh C C, Lin S H, Cheng Y M, Chou P T 2006 Small 2 1308
[22] Xu C, Webb Watt W 1996 J. Opt. Soc. Am. B 13 481
[23] Magde D, Rojas G E, Seybold P G 1999 Photochem. Photobiol. 70 737
计量
- 文章访问数: 6749
- PDF下载量: 970
- 被引次数: 0