Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Frontier of soft matter experimental technique: single molecular manipulation

Qian Hui Chen Hu Yan Jie

Citation:

Frontier of soft matter experimental technique: single molecular manipulation

Qian Hui, Chen Hu, Yan Jie
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Biomolecules such as proteins and nucleic acids play critical roles in biological processes. Traditional molecular biological experimental techniques usually measure the properties of an ensemble of molecules. The detected signal originates from the average response of large number of molecules, which often conceals the detailed dynamic information about conformational transitions. In addition, many biomolecules, such as cytoskeleton proteins and molecular motors, are subjected to stretching forces or are able to generate force while playing their biological roles in vivo. It is difficult for traditional experimental methods to be used to study the mechanical response of biomolecules. Single molecule manipulation techniques developed in recent twenty years are capable of manipulating and measuring the property of single molecule. Especially, the force response of single molecule can be measured in high precision. The most popular single molecular manipulation techniques are atomic force microscope, optical tweezers, and magnetic tweezers. Here we introduce the principle, capability of force and extension measurement, spatial and temporal resolutions of these three techniques. Applications of single molecular manipulation techniques in the conformation transitions of DNA, protein, and their interactions, and mechanism of molecular motors will be briefly reviewed. This review will provide a useful reference to biologists to learn and use single molecular manipulation techniques to solve biological problems.
      Corresponding author: Chen Hu, chenhu@xmu.edu.cn;phyyj@nus.edu.cn ; Yan Jie, chenhu@xmu.edu.cn;phyyj@nus.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11474237, 11574310), the 111 Project, China (Grant No. B16029), the Fundamental Research Funds for the Central Universities, China (Grant No. 2013121005), and the National Research Foundation of Singapore through the NRF Investigatorship and the Mechanobiology Institute (to JY).
    [1]

    Lewin B 2004 Genes VIII (Upper Saddle River: Pearson Prentice Hall)

    [2]

    Moore S W, Roca-Cusachs P, Sheetz M P 2010 Dev. Cell 19 194

    [3]

    Fersht A R 1995 Curr. Opin. Struct. Biol. 5 79

    [4]

    SantaLucia J, Hicks D 2004 Annu. Rev. Biophys. Biomol. Struct. 33 415

    [5]

    Visscher K, Block S M 2000 Nat. Cell Biol. 2 718

    [6]

    Zhu C 2014 Ann. Biomed. Eng. 42 388

    [7]

    Bustamante C, Cheng W, Mejia Y X 2011 Cell 144 480

    [8]

    Xie X S, Choi P J, Li G W, Lee N K, Lia G 2008 Annu. Rev. Biophys. 37 417

    [9]

    Bockelmann U 2004 Curr. Opin. Struct. Biol. 14 368

    [10]

    Strick T R, Dessinges M N, Charvin G, Dekker N H, Allemand J F, Bensimon D, Croquette V 2003 Rep. Prog. Phys. 66 1

    [11]

    Wang M D 1999 Curr. Opin. Biotechnol. 10 81

    [12]

    Neuman K C, Nagy A 2008 Nat. Methods 5 491

    [13]

    Huang B, Bates M, Zhuang X 2009 Annu. Rev. Biochem. 78 993

    [14]

    Huang B, Babcock H, Zhuang X 2010 Cell 143 1047

    [15]

    Roy R, Hohng S, Ha T 2008 Nat. Methods 5 507

    [16]

    Weiss S 1999 Science 283 1676

    [17]

    Rief M, Gautel M, Oesterhelt F, Fernandez J M, Gaub H E 1997 Science 276 1109

    [18]

    Smith S B, Cui Y, Bustamante C 1996 Science 271 795

    [19]

    Strick T R, Allemand J F, Bensimon D, Bensimon A, Croquette V 1996 Science 271 1835

    [20]

    Cluzel P, Lebrun A, Heller C, Lavery R, Viovy J L, Chatenay D, Caron F 1996 Science 271 792

    [21]

    Sitters G, Kamsma D, Thalhammer G, Ritsch-Marte M, Peterman E J G, Wuite G J L 2015 Nat. Methods 12 47

    [22]

    Fisher T E, Marszalek P E, Fernandez J M 2000 Nat. Struct. Biol. 7 719

    [23]

    Javadi Y, Fernandez J M, Perez-Jimenez R 2013 Physiology 28 9

    [24]

    Liu F, Ouyang Z C 2006 Phys. Rev. E 74 051904

    [25]

    Thomas W E, Vogel V, Sokurenko E 2008 Annu. Rev. Biophys. 37 399

    [26]

    Zhang X, Ma L, Zhang Y 2013 Yale J. Biol. Med. 86 367

    [27]

    Moffitt J R, Chemla Y R, Smith S B, Bustamante C 2008 Annu. Rev. Biochem. 77 205

    [28]

    Gosse C, Croquette V 2002 Biophys. J. 82 3314

    [29]

    Chen H, Chandrasekar S, Sheetz M P, Stossel T P, Nakamura F, Yan J 2013 Sci. Rep. 3 1642

    [30]

    Chen H, Fu H, Zhu X, Cong P, Nakamura F, Yan J 2011 Biophys. J. 100 517

    [31]

    Chen H, Zhu X, Cong P, Sheetz M P, Nakamura F, Yan J 2011 Biophys. J. 101 1231

    [32]

    Lipfert J, Skinner G M, Keegstra J M, Hensgens T, Jager T, Dulin D, Kber M, Yu Z, Donkers S P, Chou F C, Das R, Dekker N H 2014 Proc. Natl. Acad. Sci. USA 111 15408

    [33]

    Lipfert J, Kerssemakers J W J, Jager T, Dekker N H 2010 Nat. Methods 7 977

    [34]

    Lipfert J, Wiggin M, Kerssemakers J W J, Pedaci F, Dekker N H 2011 Nat. Commun. 2 439

    [35]

    Chen H, Yuan G, Winardhi R S, Yao M, Popa I, Fernandez J M, Yan J 2015 J. Am. Chem. Soc. 137 3540

    [36]

    Marko J F, Siggia E D 1995 Macromolecules 28 8759

    [37]

    Bustamante C, Marko J F, Siggia E D, Smith S 1994 Science 265 1599

    [38]

    Smith S B, Finzi L, Bustamante C 1992 Science 258 1122

    [39]

    Yan J, Marko J F 2003 Phys. Rev. E 68 011905

    [40]

    Cao Y, Li H 2007 Nat. Mater. 6 109

    [41]

    Cao Y, Li H 2011 Langmuir 27 1440

    [42]

    Fernandez J M, Li H 2004 Science 303 1674

    [43]

    Broekmans O D, King G A, Stephens G J, Wuite J G L 2016 Phys. Rev. Lett. 116 258102

    [44]

    Zhang X, Chen H, Le S, Rouzina I, Doyle P S, Yan J 2013 Proc. Natl. Acad. Sci. USA 110 3865

    [45]

    Zhang X, Chen H, Fu H, Doyle P S, Yan J 2012 Proc. Natl. Acad. Sci. USA 109 8103

    [46]

    Brower-Toland B, Wang M D 2004 Methods Enzymol. 376 62

    [47]

    Skoko D, Yan J, Johnson R C, Marko J F 2005 Phys. Rev. Lett. 95 208101

    [48]

    Xiao B, Johnson R C, Marko J F 2010 Nucleic Acids Res. 38 6176

    [49]

    Liu Y, Chen H, Kenney L J, Yan J 2010 Genes Dev. 24 339

    [50]

    King G M, Carter A R, Churnside A B, Eberle L S, Perkins T T 2009 Nano Lett. 9 1451

    [51]

    Edwards D T, Faulk J K, Sanders A W, Bull M S, Walder R, LeBlanc M A, Sousa M C, Perkins T T 2015 Nano. Lett. 15 7091

    [52]

    Neupane K, Manuel A P, Woodside M T 2016 Nat. Phys. 12 700

    [53]

    Comstock M J, Ha T, Chemla Y R 2011 Nat. Methods 8 335

    [54]

    Lee M, Kim S H, Hong S C 2010 Proc. Natl. Acad. Sci. USA 107 4985

  • [1]

    Lewin B 2004 Genes VIII (Upper Saddle River: Pearson Prentice Hall)

    [2]

    Moore S W, Roca-Cusachs P, Sheetz M P 2010 Dev. Cell 19 194

    [3]

    Fersht A R 1995 Curr. Opin. Struct. Biol. 5 79

    [4]

    SantaLucia J, Hicks D 2004 Annu. Rev. Biophys. Biomol. Struct. 33 415

    [5]

    Visscher K, Block S M 2000 Nat. Cell Biol. 2 718

    [6]

    Zhu C 2014 Ann. Biomed. Eng. 42 388

    [7]

    Bustamante C, Cheng W, Mejia Y X 2011 Cell 144 480

    [8]

    Xie X S, Choi P J, Li G W, Lee N K, Lia G 2008 Annu. Rev. Biophys. 37 417

    [9]

    Bockelmann U 2004 Curr. Opin. Struct. Biol. 14 368

    [10]

    Strick T R, Dessinges M N, Charvin G, Dekker N H, Allemand J F, Bensimon D, Croquette V 2003 Rep. Prog. Phys. 66 1

    [11]

    Wang M D 1999 Curr. Opin. Biotechnol. 10 81

    [12]

    Neuman K C, Nagy A 2008 Nat. Methods 5 491

    [13]

    Huang B, Bates M, Zhuang X 2009 Annu. Rev. Biochem. 78 993

    [14]

    Huang B, Babcock H, Zhuang X 2010 Cell 143 1047

    [15]

    Roy R, Hohng S, Ha T 2008 Nat. Methods 5 507

    [16]

    Weiss S 1999 Science 283 1676

    [17]

    Rief M, Gautel M, Oesterhelt F, Fernandez J M, Gaub H E 1997 Science 276 1109

    [18]

    Smith S B, Cui Y, Bustamante C 1996 Science 271 795

    [19]

    Strick T R, Allemand J F, Bensimon D, Bensimon A, Croquette V 1996 Science 271 1835

    [20]

    Cluzel P, Lebrun A, Heller C, Lavery R, Viovy J L, Chatenay D, Caron F 1996 Science 271 792

    [21]

    Sitters G, Kamsma D, Thalhammer G, Ritsch-Marte M, Peterman E J G, Wuite G J L 2015 Nat. Methods 12 47

    [22]

    Fisher T E, Marszalek P E, Fernandez J M 2000 Nat. Struct. Biol. 7 719

    [23]

    Javadi Y, Fernandez J M, Perez-Jimenez R 2013 Physiology 28 9

    [24]

    Liu F, Ouyang Z C 2006 Phys. Rev. E 74 051904

    [25]

    Thomas W E, Vogel V, Sokurenko E 2008 Annu. Rev. Biophys. 37 399

    [26]

    Zhang X, Ma L, Zhang Y 2013 Yale J. Biol. Med. 86 367

    [27]

    Moffitt J R, Chemla Y R, Smith S B, Bustamante C 2008 Annu. Rev. Biochem. 77 205

    [28]

    Gosse C, Croquette V 2002 Biophys. J. 82 3314

    [29]

    Chen H, Chandrasekar S, Sheetz M P, Stossel T P, Nakamura F, Yan J 2013 Sci. Rep. 3 1642

    [30]

    Chen H, Fu H, Zhu X, Cong P, Nakamura F, Yan J 2011 Biophys. J. 100 517

    [31]

    Chen H, Zhu X, Cong P, Sheetz M P, Nakamura F, Yan J 2011 Biophys. J. 101 1231

    [32]

    Lipfert J, Skinner G M, Keegstra J M, Hensgens T, Jager T, Dulin D, Kber M, Yu Z, Donkers S P, Chou F C, Das R, Dekker N H 2014 Proc. Natl. Acad. Sci. USA 111 15408

    [33]

    Lipfert J, Kerssemakers J W J, Jager T, Dekker N H 2010 Nat. Methods 7 977

    [34]

    Lipfert J, Wiggin M, Kerssemakers J W J, Pedaci F, Dekker N H 2011 Nat. Commun. 2 439

    [35]

    Chen H, Yuan G, Winardhi R S, Yao M, Popa I, Fernandez J M, Yan J 2015 J. Am. Chem. Soc. 137 3540

    [36]

    Marko J F, Siggia E D 1995 Macromolecules 28 8759

    [37]

    Bustamante C, Marko J F, Siggia E D, Smith S 1994 Science 265 1599

    [38]

    Smith S B, Finzi L, Bustamante C 1992 Science 258 1122

    [39]

    Yan J, Marko J F 2003 Phys. Rev. E 68 011905

    [40]

    Cao Y, Li H 2007 Nat. Mater. 6 109

    [41]

    Cao Y, Li H 2011 Langmuir 27 1440

    [42]

    Fernandez J M, Li H 2004 Science 303 1674

    [43]

    Broekmans O D, King G A, Stephens G J, Wuite J G L 2016 Phys. Rev. Lett. 116 258102

    [44]

    Zhang X, Chen H, Le S, Rouzina I, Doyle P S, Yan J 2013 Proc. Natl. Acad. Sci. USA 110 3865

    [45]

    Zhang X, Chen H, Fu H, Doyle P S, Yan J 2012 Proc. Natl. Acad. Sci. USA 109 8103

    [46]

    Brower-Toland B, Wang M D 2004 Methods Enzymol. 376 62

    [47]

    Skoko D, Yan J, Johnson R C, Marko J F 2005 Phys. Rev. Lett. 95 208101

    [48]

    Xiao B, Johnson R C, Marko J F 2010 Nucleic Acids Res. 38 6176

    [49]

    Liu Y, Chen H, Kenney L J, Yan J 2010 Genes Dev. 24 339

    [50]

    King G M, Carter A R, Churnside A B, Eberle L S, Perkins T T 2009 Nano Lett. 9 1451

    [51]

    Edwards D T, Faulk J K, Sanders A W, Bull M S, Walder R, LeBlanc M A, Sousa M C, Perkins T T 2015 Nano. Lett. 15 7091

    [52]

    Neupane K, Manuel A P, Woodside M T 2016 Nat. Phys. 12 700

    [53]

    Comstock M J, Ha T, Chemla Y R 2011 Nat. Methods 8 335

    [54]

    Lee M, Kim S H, Hong S C 2010 Proc. Natl. Acad. Sci. USA 107 4985

  • [1] Wang Yan, Peng Miao, Cheng Wei, Peng Zheng, Cheng Hao, Zang Sheng-Yin, Liu Hao, Ren Xiao-Dong, Shuai Yu-Bei, Huang Cheng-Zhi, Wu Jia-Gui, Yang Jun-Bo. Controllable multi-trap optical tweezers based on low loss optical phase change and metalens. Acta Physica Sinica, 2023, 72(2): 027801. doi: 10.7498/aps.72.20221794
    [2] Zhang Yu-Hang, Xue Zhen-Yong, Sun Hao, Zhang Zhu-Wei, Chen Hu. Single molecule magnetic tweezers for unfolding dynamics of Acyl-CoA binding protein. Acta Physica Sinica, 2023, 72(15): 158702. doi: 10.7498/aps.72.20230533
    [3] Chen Ze, Ma Jian-Bing, Huang Xing-Yuan, Jia Qi, Xu Chun-Hua, Zhang Hui-Dong, Lu Ying. T7 helicase unwinding and stand switching investigated via single-molecular technology. Acta Physica Sinica, 2018, 67(11): 118201. doi: 10.7498/aps.67.20180501
    [4] Teng Cui-Juan, Lu Yue, Ma Jian-Bing, Li Ming, Lu Ying, Xu Chun-Hua. Interaction between Sso7d and DNA studied by single-molecule technique. Acta Physica Sinica, 2018, 67(14): 148201. doi: 10.7498/aps.67.20180630
    [5] Zhao Zhen-Ye, Xu Chun-Hua, Li Jing-Hua, Huang Xing-Yuan, Ma Jian-Bing, Lu Ying. Study of Bloom resolving G-quadruplex process by using high resolution magnetic tweezer with illumination of total internal reflection. Acta Physica Sinica, 2017, 66(18): 188701. doi: 10.7498/aps.66.188701
    [6] Zhou Hao-Tian, Gao Xiang, Zheng Peng, Qin Meng, Cao Yi, Wang Wei. Mechanical properties of elastomeric proteins studied by single molecule force spectroscopy. Acta Physica Sinica, 2016, 65(18): 188703. doi: 10.7498/aps.65.188703
    [7] Zhang Yu-Wei, Yan Yan, Nong Da-Guan, Xu Chun-Hua, Li Ming. Combination of magnetic tweezers with DNA hairpin as a potential approach to the study of RecA-mediated homologous recombination. Acta Physica Sinica, 2016, 65(21): 218702. doi: 10.7498/aps.65.218702
    [8] Cao Bo-Zhi, Lin Yu, Wang Yan-Wei, Yang Guang-Can. Single molecular study on interactions between avidin and DNA. Acta Physica Sinica, 2016, 65(14): 140701. doi: 10.7498/aps.65.140701
    [9] Huang Xue-Feng, Li Sheng-Ji, Zhou Dong-Hui, Zhao Guan-Jun, Wang Guan-Qing, Xu Jiang-Rong. Trap, ignition, and diffusion combustion characteristics of active carbon micro-particles at a meso-scale studied by optical tweezers. Acta Physica Sinica, 2014, 63(17): 178802. doi: 10.7498/aps.63.178802
    [10] Xue Hui, Ma Zong-Min, Shi Yun-Bo, Tang Jun, Xue Chen-Yang, Liu Jun, Li Yan-Jun. Magnetic exchange force microscopy using ferromagnetic resonance. Acta Physica Sinica, 2013, 62(18): 180704. doi: 10.7498/aps.62.180704
    [11] Wang Shuang, Zheng Hai-Zi, Zhao Zhen-Ye, Lu Yue, Xu Chun-Hua. A pair of high resolution magnetic tweezers with illumination of total reflection evanescent field and its application in the study of DNA helicases. Acta Physica Sinica, 2013, 62(16): 168703. doi: 10.7498/aps.62.168703
    [12] Ren Hong-Liang. Design and error analysis for optical tweezers based on finite conjugate microscope. Acta Physica Sinica, 2013, 62(10): 100701. doi: 10.7498/aps.62.100701
    [13] Ran Shi-Yong. Brownian motion in a harmonic trap: magnetic tweezers experiment and its simulation. Acta Physica Sinica, 2012, 61(17): 170503. doi: 10.7498/aps.61.170503
    [14] Ren Hong-Liang, Ding Pan-Feng, Li Xiao-Yan. Influences of axial position manipulation and misalignments of optical elements on radial trap position manipulation. Acta Physica Sinica, 2012, 61(21): 210701. doi: 10.7498/aps.61.210701
    [15] Ji Chao, Zhang Ling-Yun, Dou Shuo-Xing, Wang Peng-Ye. A new method to deal with biomacromolecularimage observed by atomic force microscopy. Acta Physica Sinica, 2011, 60(9): 098703. doi: 10.7498/aps.60.098703
    [16] Hu Geng-Jun, Li Jing, Long Qian, Tao Tao, Zhang Gong-Xuan, Wu Xiao-Ping. FDTD numerical simulation of the trapping force of microspherein single optical tweezers. Acta Physica Sinica, 2011, 60(3): 030301. doi: 10.7498/aps.60.030301
    [17] Fan Kang-Qi, Jia Jian-Yuan, Zhu Ying-Min, Liu Xiao-Yuan. Dynamic model of atomic force microscopy in tapping-mode. Acta Physica Sinica, 2007, 56(11): 6345-6351. doi: 10.7498/aps.56.6345
    [18] Hu Hai-Long, Zhang Kun, Wang Zhen-Xing, Wang Xiao-Ping. Study of the transport properties of self-assembled alkanethiol monolayer by conduction atomic force microscopy. Acta Physica Sinica, 2006, 55(3): 1430-1434. doi: 10.7498/aps.55.1430
    [19] Zhang Xiang-Jun, Meng Yong-Gang, Wen Shi-Zhu. On micro scanning forces under the coupling deformation of atomic force microscope probe. Acta Physica Sinica, 2004, 53(3): 728-733. doi: 10.7498/aps.53.728
    [20] Sun Run-Guang, Qi Hao, Zhang Jing. . Acta Physica Sinica, 2002, 51(6): 1203-1207. doi: 10.7498/aps.51.1203
Metrics
  • Abstract views:  9430
  • PDF Downloads:  520
  • Cited By: 0
Publishing process
  • Received Date:  02 August 2016
  • Accepted Date:  26 August 2016
  • Published Online:  05 September 2016

/

返回文章
返回
Baidu
map