-
传统的分子生物学实验方法基本都是系综的方法,测量的信号来自大量的生物分子的平均响应,这不利于得到生物分子的构象转变与功能的动力学细节. 另外,很多生物大分子如细胞骨架蛋白、分子马达等在行使功能的时候都会受到或者产生力的作用,传统的实验方法也难于研究生物分子的力学响应. 最近20年左右发展起来的单分子操控技术可以实现对单个分子的操控,同时测量单个分子在拉力作用下的力学响应. 最为常用的单分子操控技术主要包括光镊、磁镊和原子力显微镜,不同的技术有不同的特点和适用范围. 本文对几种常用的单分子操纵技术的特点,包括物理原理、可以施加的力的范围与精度、可以测量的分子长度范围与精度等做一个系统的介绍. 另外,单分子操控技术在生物大分子如核糖核酸(DNA),脱氧核糖核酸(RNA)和蛋白质的构象转变,相互作用,以及分子马达的功能机理等方面已经取得的丰富成果也给出概括性的介绍. 本文对生物学家系统的了解单分子操控技术和如何应用该技术解决自己的生物问题提供一个有益的参考.Biomolecules such as proteins and nucleic acids play critical roles in biological processes. Traditional molecular biological experimental techniques usually measure the properties of an ensemble of molecules. The detected signal originates from the average response of large number of molecules, which often conceals the detailed dynamic information about conformational transitions. In addition, many biomolecules, such as cytoskeleton proteins and molecular motors, are subjected to stretching forces or are able to generate force while playing their biological roles in vivo. It is difficult for traditional experimental methods to be used to study the mechanical response of biomolecules. Single molecule manipulation techniques developed in recent twenty years are capable of manipulating and measuring the property of single molecule. Especially, the force response of single molecule can be measured in high precision. The most popular single molecular manipulation techniques are atomic force microscope, optical tweezers, and magnetic tweezers. Here we introduce the principle, capability of force and extension measurement, spatial and temporal resolutions of these three techniques. Applications of single molecular manipulation techniques in the conformation transitions of DNA, protein, and their interactions, and mechanism of molecular motors will be briefly reviewed. This review will provide a useful reference to biologists to learn and use single molecular manipulation techniques to solve biological problems.
-
Keywords:
- single molecular manipulation /
- magnetic tweezers /
- optical tweezers /
- atomic force microscope
[1] Lewin B 2004 Genes VIII (Upper Saddle River: Pearson Prentice Hall)
[2] Moore S W, Roca-Cusachs P, Sheetz M P 2010 Dev. Cell 19 194
[3] Fersht A R 1995 Curr. Opin. Struct. Biol. 5 79
[4] SantaLucia J, Hicks D 2004 Annu. Rev. Biophys. Biomol. Struct. 33 415
[5] Visscher K, Block S M 2000 Nat. Cell Biol. 2 718
[6] Zhu C 2014 Ann. Biomed. Eng. 42 388
[7] Bustamante C, Cheng W, Mejia Y X 2011 Cell 144 480
[8] Xie X S, Choi P J, Li G W, Lee N K, Lia G 2008 Annu. Rev. Biophys. 37 417
[9] Bockelmann U 2004 Curr. Opin. Struct. Biol. 14 368
[10] Strick T R, Dessinges M N, Charvin G, Dekker N H, Allemand J F, Bensimon D, Croquette V 2003 Rep. Prog. Phys. 66 1
[11] Wang M D 1999 Curr. Opin. Biotechnol. 10 81
[12] Neuman K C, Nagy A 2008 Nat. Methods 5 491
[13] Huang B, Bates M, Zhuang X 2009 Annu. Rev. Biochem. 78 993
[14] Huang B, Babcock H, Zhuang X 2010 Cell 143 1047
[15] Roy R, Hohng S, Ha T 2008 Nat. Methods 5 507
[16] Weiss S 1999 Science 283 1676
[17] Rief M, Gautel M, Oesterhelt F, Fernandez J M, Gaub H E 1997 Science 276 1109
[18] Smith S B, Cui Y, Bustamante C 1996 Science 271 795
[19] Strick T R, Allemand J F, Bensimon D, Bensimon A, Croquette V 1996 Science 271 1835
[20] Cluzel P, Lebrun A, Heller C, Lavery R, Viovy J L, Chatenay D, Caron F 1996 Science 271 792
[21] Sitters G, Kamsma D, Thalhammer G, Ritsch-Marte M, Peterman E J G, Wuite G J L 2015 Nat. Methods 12 47
[22] Fisher T E, Marszalek P E, Fernandez J M 2000 Nat. Struct. Biol. 7 719
[23] Javadi Y, Fernandez J M, Perez-Jimenez R 2013 Physiology 28 9
[24] Liu F, Ouyang Z C 2006 Phys. Rev. E 74 051904
[25] Thomas W E, Vogel V, Sokurenko E 2008 Annu. Rev. Biophys. 37 399
[26] Zhang X, Ma L, Zhang Y 2013 Yale J. Biol. Med. 86 367
[27] Moffitt J R, Chemla Y R, Smith S B, Bustamante C 2008 Annu. Rev. Biochem. 77 205
[28] Gosse C, Croquette V 2002 Biophys. J. 82 3314
[29] Chen H, Chandrasekar S, Sheetz M P, Stossel T P, Nakamura F, Yan J 2013 Sci. Rep. 3 1642
[30] Chen H, Fu H, Zhu X, Cong P, Nakamura F, Yan J 2011 Biophys. J. 100 517
[31] Chen H, Zhu X, Cong P, Sheetz M P, Nakamura F, Yan J 2011 Biophys. J. 101 1231
[32] Lipfert J, Skinner G M, Keegstra J M, Hensgens T, Jager T, Dulin D, Kber M, Yu Z, Donkers S P, Chou F C, Das R, Dekker N H 2014 Proc. Natl. Acad. Sci. USA 111 15408
[33] Lipfert J, Kerssemakers J W J, Jager T, Dekker N H 2010 Nat. Methods 7 977
[34] Lipfert J, Wiggin M, Kerssemakers J W J, Pedaci F, Dekker N H 2011 Nat. Commun. 2 439
[35] Chen H, Yuan G, Winardhi R S, Yao M, Popa I, Fernandez J M, Yan J 2015 J. Am. Chem. Soc. 137 3540
[36] Marko J F, Siggia E D 1995 Macromolecules 28 8759
[37] Bustamante C, Marko J F, Siggia E D, Smith S 1994 Science 265 1599
[38] Smith S B, Finzi L, Bustamante C 1992 Science 258 1122
[39] Yan J, Marko J F 2003 Phys. Rev. E 68 011905
[40] Cao Y, Li H 2007 Nat. Mater. 6 109
[41] Cao Y, Li H 2011 Langmuir 27 1440
[42] Fernandez J M, Li H 2004 Science 303 1674
[43] Broekmans O D, King G A, Stephens G J, Wuite J G L 2016 Phys. Rev. Lett. 116 258102
[44] Zhang X, Chen H, Le S, Rouzina I, Doyle P S, Yan J 2013 Proc. Natl. Acad. Sci. USA 110 3865
[45] Zhang X, Chen H, Fu H, Doyle P S, Yan J 2012 Proc. Natl. Acad. Sci. USA 109 8103
[46] Brower-Toland B, Wang M D 2004 Methods Enzymol. 376 62
[47] Skoko D, Yan J, Johnson R C, Marko J F 2005 Phys. Rev. Lett. 95 208101
[48] Xiao B, Johnson R C, Marko J F 2010 Nucleic Acids Res. 38 6176
[49] Liu Y, Chen H, Kenney L J, Yan J 2010 Genes Dev. 24 339
[50] King G M, Carter A R, Churnside A B, Eberle L S, Perkins T T 2009 Nano Lett. 9 1451
[51] Edwards D T, Faulk J K, Sanders A W, Bull M S, Walder R, LeBlanc M A, Sousa M C, Perkins T T 2015 Nano. Lett. 15 7091
[52] Neupane K, Manuel A P, Woodside M T 2016 Nat. Phys. 12 700
[53] Comstock M J, Ha T, Chemla Y R 2011 Nat. Methods 8 335
[54] Lee M, Kim S H, Hong S C 2010 Proc. Natl. Acad. Sci. USA 107 4985
-
[1] Lewin B 2004 Genes VIII (Upper Saddle River: Pearson Prentice Hall)
[2] Moore S W, Roca-Cusachs P, Sheetz M P 2010 Dev. Cell 19 194
[3] Fersht A R 1995 Curr. Opin. Struct. Biol. 5 79
[4] SantaLucia J, Hicks D 2004 Annu. Rev. Biophys. Biomol. Struct. 33 415
[5] Visscher K, Block S M 2000 Nat. Cell Biol. 2 718
[6] Zhu C 2014 Ann. Biomed. Eng. 42 388
[7] Bustamante C, Cheng W, Mejia Y X 2011 Cell 144 480
[8] Xie X S, Choi P J, Li G W, Lee N K, Lia G 2008 Annu. Rev. Biophys. 37 417
[9] Bockelmann U 2004 Curr. Opin. Struct. Biol. 14 368
[10] Strick T R, Dessinges M N, Charvin G, Dekker N H, Allemand J F, Bensimon D, Croquette V 2003 Rep. Prog. Phys. 66 1
[11] Wang M D 1999 Curr. Opin. Biotechnol. 10 81
[12] Neuman K C, Nagy A 2008 Nat. Methods 5 491
[13] Huang B, Bates M, Zhuang X 2009 Annu. Rev. Biochem. 78 993
[14] Huang B, Babcock H, Zhuang X 2010 Cell 143 1047
[15] Roy R, Hohng S, Ha T 2008 Nat. Methods 5 507
[16] Weiss S 1999 Science 283 1676
[17] Rief M, Gautel M, Oesterhelt F, Fernandez J M, Gaub H E 1997 Science 276 1109
[18] Smith S B, Cui Y, Bustamante C 1996 Science 271 795
[19] Strick T R, Allemand J F, Bensimon D, Bensimon A, Croquette V 1996 Science 271 1835
[20] Cluzel P, Lebrun A, Heller C, Lavery R, Viovy J L, Chatenay D, Caron F 1996 Science 271 792
[21] Sitters G, Kamsma D, Thalhammer G, Ritsch-Marte M, Peterman E J G, Wuite G J L 2015 Nat. Methods 12 47
[22] Fisher T E, Marszalek P E, Fernandez J M 2000 Nat. Struct. Biol. 7 719
[23] Javadi Y, Fernandez J M, Perez-Jimenez R 2013 Physiology 28 9
[24] Liu F, Ouyang Z C 2006 Phys. Rev. E 74 051904
[25] Thomas W E, Vogel V, Sokurenko E 2008 Annu. Rev. Biophys. 37 399
[26] Zhang X, Ma L, Zhang Y 2013 Yale J. Biol. Med. 86 367
[27] Moffitt J R, Chemla Y R, Smith S B, Bustamante C 2008 Annu. Rev. Biochem. 77 205
[28] Gosse C, Croquette V 2002 Biophys. J. 82 3314
[29] Chen H, Chandrasekar S, Sheetz M P, Stossel T P, Nakamura F, Yan J 2013 Sci. Rep. 3 1642
[30] Chen H, Fu H, Zhu X, Cong P, Nakamura F, Yan J 2011 Biophys. J. 100 517
[31] Chen H, Zhu X, Cong P, Sheetz M P, Nakamura F, Yan J 2011 Biophys. J. 101 1231
[32] Lipfert J, Skinner G M, Keegstra J M, Hensgens T, Jager T, Dulin D, Kber M, Yu Z, Donkers S P, Chou F C, Das R, Dekker N H 2014 Proc. Natl. Acad. Sci. USA 111 15408
[33] Lipfert J, Kerssemakers J W J, Jager T, Dekker N H 2010 Nat. Methods 7 977
[34] Lipfert J, Wiggin M, Kerssemakers J W J, Pedaci F, Dekker N H 2011 Nat. Commun. 2 439
[35] Chen H, Yuan G, Winardhi R S, Yao M, Popa I, Fernandez J M, Yan J 2015 J. Am. Chem. Soc. 137 3540
[36] Marko J F, Siggia E D 1995 Macromolecules 28 8759
[37] Bustamante C, Marko J F, Siggia E D, Smith S 1994 Science 265 1599
[38] Smith S B, Finzi L, Bustamante C 1992 Science 258 1122
[39] Yan J, Marko J F 2003 Phys. Rev. E 68 011905
[40] Cao Y, Li H 2007 Nat. Mater. 6 109
[41] Cao Y, Li H 2011 Langmuir 27 1440
[42] Fernandez J M, Li H 2004 Science 303 1674
[43] Broekmans O D, King G A, Stephens G J, Wuite J G L 2016 Phys. Rev. Lett. 116 258102
[44] Zhang X, Chen H, Le S, Rouzina I, Doyle P S, Yan J 2013 Proc. Natl. Acad. Sci. USA 110 3865
[45] Zhang X, Chen H, Fu H, Doyle P S, Yan J 2012 Proc. Natl. Acad. Sci. USA 109 8103
[46] Brower-Toland B, Wang M D 2004 Methods Enzymol. 376 62
[47] Skoko D, Yan J, Johnson R C, Marko J F 2005 Phys. Rev. Lett. 95 208101
[48] Xiao B, Johnson R C, Marko J F 2010 Nucleic Acids Res. 38 6176
[49] Liu Y, Chen H, Kenney L J, Yan J 2010 Genes Dev. 24 339
[50] King G M, Carter A R, Churnside A B, Eberle L S, Perkins T T 2009 Nano Lett. 9 1451
[51] Edwards D T, Faulk J K, Sanders A W, Bull M S, Walder R, LeBlanc M A, Sousa M C, Perkins T T 2015 Nano. Lett. 15 7091
[52] Neupane K, Manuel A P, Woodside M T 2016 Nat. Phys. 12 700
[53] Comstock M J, Ha T, Chemla Y R 2011 Nat. Methods 8 335
[54] Lee M, Kim S H, Hong S C 2010 Proc. Natl. Acad. Sci. USA 107 4985
计量
- 文章访问数: 9382
- PDF下载量: 518
- 被引次数: 0