Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Single molecule optical-probes measured power law distribution of polymer dynamics

Li Bin Zhang Guo-Feng Jing Ming-Yong Chen Rui-Yun Qin Cheng-Bing Gao Yan Xiao Lian-Tuan Jia Suo-Tang

Citation:

Single molecule optical-probes measured power law distribution of polymer dynamics

Li Bin, Zhang Guo-Feng, Jing Ming-Yong, Chen Rui-Yun, Qin Cheng-Bing, Gao Yan, Xiao Lian-Tuan, Jia Suo-Tang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The optical signals of single molecules provide information about structures and dynamic behaviors of their nanoscale environments, and eliminations of space and time averaging effect. These are particularly useful whenever complex structures or dynamic behaviors are present, especially in polymers. The single molecules absorbed onto polymer chains rotate with rotational relaxation of polymer chains. Thus, we can measure the dynamic properties of polymer thin films by measuring the rotational properties of single molecules. Here, we use single Nile Red(NR) dye molecules as nano-probes to measure polymer dynamic behaviors of poly(methyl acrylate)(PMA) polymer film. The polymer films are prepared on cleaned glass coverslips by spin-coating 1.0 wt.%solution of PMA containing ~10-9 mol/L NR molecules in toluene. Defocused wide-field fluorescence microscopy is used to measure the three-dimensional molecular rotational diffusion of single NR molecules in PMA polymer thin film. The local environmental change driven by heterogeneous dynamics of the polymer can be probed by parallel imaging of several molecules. It is found that at Tg+19 K, rotations of NR single molecules in different nano-areas are in two different ways, i.e., rotational way(rotational molecules account for ~83%) and non-rotaional way(non-rotational molecules occupy~17%). The rotational molecules include the single molecules of intermittent rotation with a short time and a long time. The different rotational patterns indicate that there is still a spatial and temporal heterogeneity of dynamics in PMA polymer film at a temperature of Tg+19 K. The autocorrelation function C(t) of angular change of dipole orientation of NR single molecules is calculated to reveal the property of polymer dynamics. The decay of C(t) can be fitted by Kohlrausch-Williams-Watt stretched exponential function. The averaged timescale of rotational diffusion c for 183 rotational NR single molecules indicates that the timescale of polymer dynamics at 300 K is~3 s. In order to investigate the temporal heterogeneity of PMA polymer dynamics, we define a threshold to separate the single molecular rotation into two parts:rotational state and non-rotational state. According to the statistics of duration time of rotational state and non-rotational state, we can obtain the probability densities of duration time of rotational states and non-rotational states of the single molecules. The probability densities obey a truncated power law, which indicates that there are still the behaviors of trapping and self-trapping in PMA polymer chains at Tg+19 K. The researches of spatial and temporal heterogeneity of dynamics of PMA polymers in nano-environment have great significance for preparing the high performance materials.
      Corresponding author: Xiao Lian-Tuan, guofeng.zhang@sxu.edu.cn;xlt@sxu.edu.cn
    • Funds: Project supported by the National Basic Research Program of China(Grant No. 2012CB921603), the National Natural Science Foundation of China(Grant Nos. 61527824, 11434007, 11374196, 11404200, 11504216, U1510133), the Program for Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China(Grant No. IRT13076), the China Postdoctoral Science Foundation(Grant No. 2014M550151), and the Fund Program for the Scientific Activities of Selected Returned Overseas Professionals in Shanxi Province, China.
    [1]

    Orrit M, Ha T, Sandoghdar V 2014 Chem. Soc. Rev. 43 973

    [2]

    Janssen K P F, de Cremer G, Neely R K, Kubarev A V, van Loon J, Martens J A, de Vos D E, Roeffaers M B J, Hofkens J 2014 Chem. Soc. Rev. 43 990

    [3]

    Kern A M, Zhang D, Brecht M, Chizhik A I, Failla A V, Wackenhut F, Meixner A J 2014 Chem. Soc. Rev. 43 1263

    [4]

    Kozankiewicz B, Orrit M 2014 Chem. Soc. Rev. 43 1029

    [5]

    Stennett E M S, Ciuba M A, Levitus M 2014 Chem. Soc. Rev. 43 1057

    [6]

    van de Linde S, Sauer M 2014 Chem. Soc. Rev. 43 1076

    [7]

    Zheng Y J, Zhang Z Y, Zhang X Z 2009 Acta Phys. Sin. 58 8194(in Chinese)[郑雨军, 张兆玉, 张西忠2009 58 8194]

    [8]

    Han B P, Zheng Y J, Hu F, Fan Q B 2015 Chin. Phys. Lett. 32 063303

    [9]

    Orrit M 2014 Nat. Photon. 8 887

    [10]

    Oh H, Green P F 2009 Nat. Mater. 8 139

    [11]

    Wöll D, Braeken E, Deres A, de Schryver F C, Uji-i H, Hofkens J 2009 Chem. Soc. Rev. 38 313

    [12]

    Gaiduk A, Yorulmaz M, Ruijgrok P V, Orrit M 2010 Science 330 353

    [13]

    Hutchison J A, Uji-i H, Deres A, Vosch T, Rocha S, Muller S, Bastian A A, Enderlein J, Nourouzi H, Li C, Herrmann A, Mullen K, de Schryver F, Hofkens J 2014 Nat. Nanotech. 9 131

    [14]

    Stigler J, Ziegler F, Gieseke A, Gebhardt J C M, Rief M 2011 Science 334 512

    [15]

    Rezus Y L, Walt S G, Lettow R, Renn A, Zumofen G, Gotzinger S, Sandoghdar V 2012 Phys. Rev. Lett. 108 093601

    [16]

    Puller V, Lounis B, Pistolesi F 2013 Phys. Rev. Lett. 110 125501

    [17]

    Graves E T, Duboc C, Fan J, Stransky F, Leroux-Coyau M, Strick T R 2015 Nat. Struct. Mol. Biol. 22 452

    [18]

    Sugo N, Morimatsu M, Arai Y, Kousoku Y, Ohkuni A, Nomura T, Yanagida T, Yamamoto N 2015 Sci. Rep. 5 10662

    [19]

    Kulzer F, Xia T, Orrit M 2010 Angew Chem. Int. Ed. Engl. 49 854

    [20]

    Paeng K, Kaufman L J 2014 Chem. Soc. Rev. 43 977

    [21]

    Piwonski H, Sokolowski A, Waluk J 2015 J. Phys. Chem. Lett. 6 2477

    [22]

    Krause S, Neumann M, Frobe M, Magerle R, von Borczyskowski C 2016 ACS Nano 10 1908

    [23]

    Bolinger J C, Traub M C, Adachi T, Barbara P F 2016 Science 331 565

    [24]

    Zhang G F, Zhang F, Cheng F Y, Sun J H, Xiao L T, Jia S T 2009 Acta Phys. Sin. 58 2364(in Chinese)[张国峰, 张芳, 程峰钰, 孙建虎, 肖连团, 贾锁堂2009 58 2364]

    [25]

    Deres A, Floudas G A, Mllen K, van der Auweraer M, de Schryver F, Enderlein J, Uji-i H, Hofkens J 2011 Macromolecules 44 9703

    [26]

    Vogelsang J, Brazard J, Adachi T, Bolinger J C, Barbara P F 2011 Angew. Chem. Int. Edit. 50 2257

    [27]

    Abadi M, Serag M F, Habuchi S 2015 Macromolecules 48 6263

    [28]

    Zhang G, Xiao L, Zhang F, Wang X, Jia S 2010 Phys. Chem. Chem. Phys. 12 2308

    [29]

    Habuchi S, Fujiwara S, Yamamoto T, Vacha M, Tezuka Y 2013 Anal. Chem. 85 7369

    [30]

    Schob A, Cichos F, Schuster J, von Borczyskowski C 2004 Eur. Polym. J. 40 1019

    [31]

    Vallee R A L, Cotlett M, van der Auweraer M, Hofkens J, Mullen K, de Schryver F C 2004 J. Am. Chem. Soc. 126 2296

    [32]

    Uji-i H, Melnikov S M, Deres A, Bergamini G, de Schryver F, Herrmann A, Mllen K, Enderlein J, Hofkens J 2006 Polymer 47 2511

    [33]

    Cser A, Nagy K, Biczok L 2002 Chem. Phys. Lett. 360 473

    [34]

    Yoo H, Furumaki S, Yang J, Lee J E, Chung H, Oba T, Kobayashi H, Rybtchinski B, Wilson T M, Wasielewski M R, Vacha M, Kim D 2012 J. Phys. Chem. B 116 12878

    [35]

    Wang Z, Zhang G F, Li B, Chen R Y, Qin C B, Xiao L T, Jia S T 2015 Acta Phys. Sin. 64 247803(in Chinese)[王早, 张国峰, 李斌, 陈瑞云, 秦成兵, 肖连团, 贾锁堂2015 64 247803]

  • [1]

    Orrit M, Ha T, Sandoghdar V 2014 Chem. Soc. Rev. 43 973

    [2]

    Janssen K P F, de Cremer G, Neely R K, Kubarev A V, van Loon J, Martens J A, de Vos D E, Roeffaers M B J, Hofkens J 2014 Chem. Soc. Rev. 43 990

    [3]

    Kern A M, Zhang D, Brecht M, Chizhik A I, Failla A V, Wackenhut F, Meixner A J 2014 Chem. Soc. Rev. 43 1263

    [4]

    Kozankiewicz B, Orrit M 2014 Chem. Soc. Rev. 43 1029

    [5]

    Stennett E M S, Ciuba M A, Levitus M 2014 Chem. Soc. Rev. 43 1057

    [6]

    van de Linde S, Sauer M 2014 Chem. Soc. Rev. 43 1076

    [7]

    Zheng Y J, Zhang Z Y, Zhang X Z 2009 Acta Phys. Sin. 58 8194(in Chinese)[郑雨军, 张兆玉, 张西忠2009 58 8194]

    [8]

    Han B P, Zheng Y J, Hu F, Fan Q B 2015 Chin. Phys. Lett. 32 063303

    [9]

    Orrit M 2014 Nat. Photon. 8 887

    [10]

    Oh H, Green P F 2009 Nat. Mater. 8 139

    [11]

    Wöll D, Braeken E, Deres A, de Schryver F C, Uji-i H, Hofkens J 2009 Chem. Soc. Rev. 38 313

    [12]

    Gaiduk A, Yorulmaz M, Ruijgrok P V, Orrit M 2010 Science 330 353

    [13]

    Hutchison J A, Uji-i H, Deres A, Vosch T, Rocha S, Muller S, Bastian A A, Enderlein J, Nourouzi H, Li C, Herrmann A, Mullen K, de Schryver F, Hofkens J 2014 Nat. Nanotech. 9 131

    [14]

    Stigler J, Ziegler F, Gieseke A, Gebhardt J C M, Rief M 2011 Science 334 512

    [15]

    Rezus Y L, Walt S G, Lettow R, Renn A, Zumofen G, Gotzinger S, Sandoghdar V 2012 Phys. Rev. Lett. 108 093601

    [16]

    Puller V, Lounis B, Pistolesi F 2013 Phys. Rev. Lett. 110 125501

    [17]

    Graves E T, Duboc C, Fan J, Stransky F, Leroux-Coyau M, Strick T R 2015 Nat. Struct. Mol. Biol. 22 452

    [18]

    Sugo N, Morimatsu M, Arai Y, Kousoku Y, Ohkuni A, Nomura T, Yanagida T, Yamamoto N 2015 Sci. Rep. 5 10662

    [19]

    Kulzer F, Xia T, Orrit M 2010 Angew Chem. Int. Ed. Engl. 49 854

    [20]

    Paeng K, Kaufman L J 2014 Chem. Soc. Rev. 43 977

    [21]

    Piwonski H, Sokolowski A, Waluk J 2015 J. Phys. Chem. Lett. 6 2477

    [22]

    Krause S, Neumann M, Frobe M, Magerle R, von Borczyskowski C 2016 ACS Nano 10 1908

    [23]

    Bolinger J C, Traub M C, Adachi T, Barbara P F 2016 Science 331 565

    [24]

    Zhang G F, Zhang F, Cheng F Y, Sun J H, Xiao L T, Jia S T 2009 Acta Phys. Sin. 58 2364(in Chinese)[张国峰, 张芳, 程峰钰, 孙建虎, 肖连团, 贾锁堂2009 58 2364]

    [25]

    Deres A, Floudas G A, Mllen K, van der Auweraer M, de Schryver F, Enderlein J, Uji-i H, Hofkens J 2011 Macromolecules 44 9703

    [26]

    Vogelsang J, Brazard J, Adachi T, Bolinger J C, Barbara P F 2011 Angew. Chem. Int. Edit. 50 2257

    [27]

    Abadi M, Serag M F, Habuchi S 2015 Macromolecules 48 6263

    [28]

    Zhang G, Xiao L, Zhang F, Wang X, Jia S 2010 Phys. Chem. Chem. Phys. 12 2308

    [29]

    Habuchi S, Fujiwara S, Yamamoto T, Vacha M, Tezuka Y 2013 Anal. Chem. 85 7369

    [30]

    Schob A, Cichos F, Schuster J, von Borczyskowski C 2004 Eur. Polym. J. 40 1019

    [31]

    Vallee R A L, Cotlett M, van der Auweraer M, Hofkens J, Mullen K, de Schryver F C 2004 J. Am. Chem. Soc. 126 2296

    [32]

    Uji-i H, Melnikov S M, Deres A, Bergamini G, de Schryver F, Herrmann A, Mllen K, Enderlein J, Hofkens J 2006 Polymer 47 2511

    [33]

    Cser A, Nagy K, Biczok L 2002 Chem. Phys. Lett. 360 473

    [34]

    Yoo H, Furumaki S, Yang J, Lee J E, Chung H, Oba T, Kobayashi H, Rybtchinski B, Wilson T M, Wasielewski M R, Vacha M, Kim D 2012 J. Phys. Chem. B 116 12878

    [35]

    Wang Z, Zhang G F, Li B, Chen R Y, Qin C B, Xiao L T, Jia S T 2015 Acta Phys. Sin. 64 247803(in Chinese)[王早, 张国峰, 李斌, 陈瑞云, 秦成兵, 肖连团, 贾锁堂2015 64 247803]

  • [1] Yao Jie, Zhao Ai-Di. Advances in detection and regulation of surface-supported molecular quantum states. Acta Physica Sinica, 2022, 71(6): 060701. doi: 10.7498/aps.71.20212324
    [2] Li Bin, Miao Xiang-Yang. Photoluminescence blinking properties of single CsPbBr3 perovskite quantum dots. Acta Physica Sinica, 2021, 70(20): 207802. doi: 10.7498/aps.70.20210908
    [3] Yang Jun-Sheng, Huang Duo-Hui. Rheological properties of ring and linear polymers under start-up shear by molecular dynamics simulations. Acta Physica Sinica, 2019, 68(13): 138301. doi: 10.7498/aps.68.20190403
    [4] Zhang Guo-Feng, Li Bin, Chen Rui-Yun, Qin Cheng-Bing, Gao Yan, Xiao Lian-Tuan, Jia Suo-Tang. Single-molecule probes revealed dynamics of confined nano-regions in miscible polymer blends. Acta Physica Sinica, 2019, 68(14): 148201. doi: 10.7498/aps.68.20190423
    [5] Wu Rui-Xiang, Zhang Guo-Feng, Qiao Zhi-Xing, Chen Rui-Yun. Dipole orientation polarization property of single-molecule manipulated by external electric field. Acta Physica Sinica, 2019, 68(12): 128201. doi: 10.7498/aps.68.20190361
    [6] Ma Jian-Bing, Zhai Yong-Liang, Nong Da-Guan, Li Jing-Hua, Fu Hang, Zhang Xing-Hua, Li Ming, Lu Ying, Xu Chun-Hua. Single molecule transverse magnetic tweezers based on light sheet illumination. Acta Physica Sinica, 2018, 67(14): 148702. doi: 10.7498/aps.67.20180441
    [7] Qin Ya-Qiang, Chen Rui-Yun, Shi Ying, Zhou Hai-Tao, Zhang Guo-Feng, Qin Cheng-Bing, Gao Yan, Xiao Lian-Tuan, Jia Suo-Tang. The role of chain conformation in energy transfer properties of single conjugated polymer molecule. Acta Physica Sinica, 2017, 66(24): 248201. doi: 10.7498/aps.66.248201
    [8] Li Jing-Cheng, Zhao Ai-Di, Wang Bing. Controlling the electronic states and transport properties of single cobalt(Ⅱ)octaethylporphyrin molecule adsorbed on Au(111) surface. Acta Physica Sinica, 2015, 64(7): 076803. doi: 10.7498/aps.64.076803
    [9] Xu Yu-Li, Chen Xue-Qian, Chen Hou-Yang, Xu Shou-Hong, Liu Hong-Lai. Selective adsorption of small molecules on grafted polymers. Acta Physica Sinica, 2011, 60(11): 117104. doi: 10.7498/aps.60.117104
    [10] Wang Guang-Zeng, Cao Yi-Jia, Bao Zhe-Jing, Han Zhen-Xiang. A novel local-world evolving network model for power grid. Acta Physica Sinica, 2009, 58(6): 3597-3602. doi: 10.7498/aps.58.3597
    [11] Wei Wei-Feng. Extension of selective theory for power law phenomena. Acta Physica Sinica, 2009, 58(10): 6696-6702. doi: 10.7498/aps.58.6696
    [12] Wei Wei-Feng. Power law phenomena based on human behaviors. Acta Physica Sinica, 2009, 58(4): 2127-2135. doi: 10.7498/aps.58.2127
    [13] Zhang Guo-Feng, Cheng Feng-Yu, Jia Suo-Tang, Sun Jian-Hu, Xiao Lian-Tuan, Zhang Fang. Experiment study of orientation and reorientation quantum dynamics of single dye molecules at room temperature. Acta Physica Sinica, 2009, 58(4): 2364-2368. doi: 10.7498/aps.58.2364
    [14] Zheng Yu-Jun, Zhang Zhao-Yu, Zhang Xi-Zhong. Similarity of high-order cumulants for single molecule kinetics. Acta Physica Sinica, 2009, 58(12): 8194-8198. doi: 10.7498/aps.58.8194
    [15] Chen Gang, Zhuang De-Wen, Zhang Hang, Xu Jun, Cheng Cheng. A difference method to solve the laser kinetic model involving temporal-special evolution. Acta Physica Sinica, 2008, 57(8): 4953-4959. doi: 10.7498/aps.57.4953
    [16] Qin Sen, Dai Guan-Zhong, Wang Lin, Fan Ming. A weighted network model with accelerated evolution. Acta Physica Sinica, 2007, 56(11): 6326-6333. doi: 10.7498/aps.56.6326
    [17] Zhi Rong, Gong Zhi-Qiang, Wang De-Ying, Feng Guo-Lin. Analysis of the spatio-temporal characteristics of precipitation of China based on the power-law exponent. Acta Physica Sinica, 2006, 55(11): 6185-6191. doi: 10.7498/aps.55.6185
    [18] He Lan, Shen Yun-Wen, K. L. Yung, Xu Yan. A new molecular model for main-chain liquid crystalline polymers based on molecular dynamics simulations. Acta Physica Sinica, 2006, 55(9): 4407-4413. doi: 10.7498/aps.55.4407
    [19] Peng Shuang-Yan, Huang Tao, Wang Xiao-Bo, Shao Jun-Hu, Xiao Liao-Tuan, Jia Suo-Tang. Identifying single molecule based on the photon statistics. Acta Physica Sinica, 2005, 54(11): 5116-5120. doi: 10.7498/aps.54.5116
    [20] QIN WEI-PING, QIN GUAN-SHI, ZHANG JI-SHEN, WU CHANG-FENG, WANG JI-WEI, DU GUO-TONG. THERMODYNAMIC BEHAVIOR OF SMPC. Acta Physica Sinica, 2001, 50(8): 1467-1474. doi: 10.7498/aps.50.1467
Metrics
  • Abstract views:  5797
  • PDF Downloads:  207
  • Cited By: 0
Publishing process
  • Received Date:  14 June 2016
  • Accepted Date:  31 July 2016
  • Published Online:  05 November 2016

/

返回文章
返回
Baidu
map