搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单分子磁镊旋转操控和基因转录调控动力学

张志鹏 刘帅 张玉琼 熊影 韩伟静 陈同生 王爽

引用本文:
Citation:

单分子磁镊旋转操控和基因转录调控动力学

张志鹏, 刘帅, 张玉琼, 熊影, 韩伟静, 陈同生, 王爽

Rotation manipulation of single-molecule magnetic trapping and gene transcription regulation dynamics

Zhang Zhi-Peng, Liu Shuai, Zhang Yu-Qiong, Xiong Ying, Han Wei-Jing, Chen Tong-Sheng, Wang Shuang
PDF
HTML
导出引用
  • 基因转录调控是生命体调节基因表达的重要过程, 是保证遗传信息可控传递和维持基因组稳定性的关键步骤. 单分子技术的发展为分子水平上探索基因转录调控动力学机制提供了新的研究范式, 有力地推动了基因转录调控规律方面的研究进展. 本文着重介绍了依据单分子磁镊旋转操控技术发展起来的操控超螺旋DNA的技术, 借助超螺旋DNA的“放大”特点, 实现了对DNA双螺旋动态打开过程的高通量、单碱基精度的测量; 随后, 介绍了单分子磁镊旋转操控技术在基因转录调控动力学研究中的应用情况, 通过实时监测转录泡结构, 实现对转录起始、延伸和终止等阶段的动力学表征, 建立了一系列新的转录调控模型; 最后, 介绍了单分子磁镊旋转操控和单分子荧光成像技术联用方案, 为研究复杂体系中的基因转录调控动力学机制提供了新的范式和范例.
    Gene transcription regulation is a key step for gene expression in all organisms and responsible for the transmission of genetic information and genome integrity. As one of the most important mechanisms in gene transcription, an RNA polymerase (RNAP) specifically interacts with and unwinds genome DNA to form a transcription bubble where a nascent RNA transcript is polymerized, taking one of the unwound DNA strands as its template. The RNAP translocates along the DNA to transcribe the whole gene by carrying the transcription bubble. In such a way, an RNAP completes its biological task of gene expression by physically acting as a molecular machinery. Thus, an RNAP molecule can be considered as a research object for physicists who are willing to uncover the mechanisms of life processes in a physical view. To achieve this, single-molecule method has been invented and used widely. As one of these methods, single-molecule magnetic trapping manipulates biological molecules by applying extension force or torque to the magnetic beads tethered through biological molecule to pre-coated glass surfaces by manipulating the position or rotation of a pair of magnets. A linear DNA molecule can be manipulated in such a way to generate plectonemes, i.e. DNA supercoils, under an extension force of 0.3 pN (1 pN = 10–12 N), possessing the feature that the number of unwound base pairs of a supercoiled DNA can be observed by the changes in the number of supercoils reflected by the DNA extension changes. Thus, the DNA unwound by RNAP, i.e. the transcription bubble, during transcription can be observed in this way. By monitoring the kinetics of the transcription bubble in real time, this method thus allows single-molecule detection with single-base resolution and a high-throughput data collection fashion in the kinetic studies of transcription. Owing to the advantages of the manipulation of DNA supercoils with single-molecule magnetic trapping, one can mimic the mechanistic feature of DNAs in vivo and characterize the kinetics of transcription under such conditions. This method can also be combined with single-molecule fluorescence method which can be applied to studying the mechanism of transcription regulation while monitoring the behaviors of fluorescently labeled biological molecules that interact with functional RNAP molecules, providing examples for studying the mechanisms of transcription regulations in more complex systems.
      通信作者: 王爽, shuangwang@iphy.ac.cn
      作者简介:
      王爽, 中国科学院物理研究所副研究员. 2008年于吉林大学获得材料物理学士学位, 2014年于中国科学院物理研究所获得凝聚态物理博士学位. 2015年至2019年在法国法国雅克莫诺研究所(Institut Jacques Monod)和巴黎高等师范学院(Ecole Normale Superieure)从事博士后研究. 目前主要研究方向是基因转录调控的单分子动力学, 相关研究成果发表在Nat. Commun., Proc. Natl. Acad. Sci. USANucleic Acids Res.等期刊, 主持国家自然科学基金项目2项, 中国科学院青年创新促进会员项目1项
    • 基金项目: 国家自然科学基金(批准号: 12004420, 32071228, 12004271, 12274308, 62135003)、中国科学院战略先导科技专项(B 类)(批准号: XDB37000000)、中国科学院青年创新促进会(批准号: 2021009)、广东省重点领域研发计划(批准号: 21202107221900001, 2022B0303040003)和广东省基础与应用基础研究基金(批准号: 2019A1515110186)资助的课题.
      Corresponding author: Wang Shuang, shuangwang@iphy.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12004420, 32071228, 12004271, 12274308, 62135003), the Strategic Priority Research Program (B) of the Chinese Academy of Sciences, China (Grant No. XDB37000000), the Youth Innovation Promotion Association of Chinese Academy of Sciences, China (Grant No. 2021009), the Key-Area Research and Development Program of Guangdong Province, China (Grant Nos. 21202107221900001, 2022B0303040003), the Basic and Applied Basic Research Foundation of Guangdong Province, China (Grant No. 2019A1515110186).
    [1]

    Watson J D, Crick F H C 1953 Nature 171 737Google Scholar

    [2]

    Watson J D, Crick F H C 1953 Nature 171 964Google Scholar

    [3]

    Crick F 1970 Nature 227 561Google Scholar

    [4]

    Monod J, Changeux J P, Jacob F 1963 J. Mol. Biol. 6 306Google Scholar

    [5]

    Monod J, Wyman J, Changeux J P 1965 J. Mol. Biol. 12 88Google Scholar

    [6]

    Zhang G, Campbell E A, Minakhin L, Richter C, Severinov K, Darst S A 1999 Cell 98 811Google Scholar

    [7]

    Gnatt A L, Cramer P, Fu J, Bushnell D A, Kornberg R D 2001 Science 292 1876Google Scholar

    [8]

    Chen X, Yin X, Li J, Wu Z, Qi Y, Wang X, Liu W, Xu Y 2021 Science 372 eabg0635Google Scholar

    [9]

    Chen X, Qi Y, Wu Z, et al. 2021 Science 372 eaba8490Google Scholar

    [10]

    Huang K, Wu X X, Fang C L, et al. 2021 Science 374 1579Google Scholar

    [11]

    Komissarova N, Becker J, Solter S, Kireeva M, Kashlev M 2002 Mol. Cell 10 1151Google Scholar

    [12]

    Skourti-Stathaki K, Proudfoot N J, Gromak N 2011 Mol. Cell 42 794Google Scholar

    [13]

    Hazelbaker D Z, Marquardt S, Wlotzka W, Buratowski S 2013 Mol. Cell 49 55Google Scholar

    [14]

    Kim S, Beltran B, Irnov I, Jacobs-Wagner C 2019 Cell 179 106Google Scholar

    [15]

    Abbondanzieri E A, Greenleaf W J, Shaevitz J W, Landick R, Block S M 2005 Nature 438 460Google Scholar

    [16]

    Chakraborty A, Wang D, Ebright Y W, et al. 2012 Science 337 591Google Scholar

    [17]

    Howan K, Smith A J, Westblade L F, Joly N, Grange W, Zorman S, Darst S A, Savery N J, Strick T R 2012 Nature 490 431Google Scholar

    [18]

    Ma J, Bai L, Wang M D 2013 Science 340 1580Google Scholar

    [19]

    Koh H R, Roy R, Sorokina M, Tang G Q, Nandakumar D, Patel S S, Ha T 2018 Mol. Cell 70 695Google Scholar

    [20]

    Rosen G A, Baek I, Friedman L J, Joo Y J, Buratowski S, Gelles J 2020 Proc. Natl. Acad. Sci. 117 32348Google Scholar

    [21]

    Neuman K C, Nagy A 2008 Nat. Methods 5 491Google Scholar

    [22]

    Roy R, Hohng S, Ha T J 2008 Nat. Methods 5 507Google Scholar

    [23]

    Gosse C, Croquette V 2002 Biophys. J. 82 3314Google Scholar

    [24]

    Cnossen J P, Dulin D, Dekker N H 2014 Rev. Sci. Instrum. 85 103712Google Scholar

    [25]

    Huhle A, Klaue D, Brutzer H, Daldrop P, Joo S, Otto O, Keyser U F, Seidel R 2015 Nat. Commun. 6 5885Google Scholar

    [26]

    Ashkin A, Dziedzic J M, Bjorkholm J E, Chu S 1986 Opt. Lett. 11 288Google Scholar

    [27]

    Ashkin A, Dziedzic J M 1987 Science 235 1517Google Scholar

    [28]

    Neuman K C, Block S M 2004 Rev. Sci. Instrum. 75 2787Google Scholar

    [29]

    Rief M, Gautel M, Oesterhelt F, Femandez J M, Gaub H E 1997 Science 276 1109Google Scholar

    [30]

    Yu H, Siewny M G W, Edwards D T, Sanders A W, Perkins T T 2017 Science 355 945Google Scholar

    [31]

    Jiao F, Cannon K S, Lin Y C, Gladfelter A S, Scheuring S 2020 Nat. Commu. 11 5062Google Scholar

    [32]

    Ha T, Enderle T, Ogletree D F, Chemla D S, Selvin P R, Weiss S 1996 Proc. Natl. Acad. Sci. 93 6264Google Scholar

    [33]

    Weiss S 1999 Science 283 1676Google Scholar

    [34]

    Lerner E, Cordes T, Ingargiola A, Alhadid Y, Chung S, Michalet X, Weiss S 2018 Science 359 eaan1133Google Scholar

    [35]

    Friedman L J, Chung J, Gelles J 2006 Biophys. J. 91 1023Google Scholar

    [36]

    Friedman L J, Gelles J 2015 Methods 86 27Google Scholar

    [37]

    Thompson M A, Lew M D, Moerner W 2012 Annu. Rev. Bioph. Biom. 41 321Google Scholar

    [38]

    Betzig E, Patterson G H, Sougrat R, Lindwasser O W, Olenych S, Bonifacino J S, Davidson M W, Lippincott-Schwartz J, Hess H F 2006 Science 313 1642Google Scholar

    [39]

    Bates M, Huang B, Dempsey G T, Zhuang X 2007 Science 317 1749Google Scholar

    [40]

    Seol Y, Neuman K C 2017 Combined Magnetic Tweezers, Micro-mirror Total Internal Reflection Fluorescence Microscope for Single-molecule Manipulation and Visualization Single Molecule Analysis (New York: Springer) pp297–316

    [41]

    Fan J, Leroux-Coyau M, Savery N J, Strick T R 2016 Nature 536 234Google Scholar

    [42]

    Comstock M J, Whitley K D, Jia H, Sokoloski J, Lohman T M, Ha T, Chemla Y R 2015 Science 348 352Google Scholar

    [43]

    Lionnet T, Allemand J F, Revyakin A, Strick T R, Saleh O A, Bensimon D, Croquette V 2011 Cold Spring Harb. Protoc. 2012 133Google Scholar

    [44]

    Smith S B, Finzi L, Bustamante C 1992 Science 258 1122Google Scholar

    [45]

    Strick T R, Allemand J F, Bensimon D, Bensimon A, Croquette V 1996 Science 271 1835Google Scholar

    [46]

    Chen H, Yuan G, Winardhi R S, Yao M, Popa I, Fernandez J M, Yan J 2015 J. Am. Chem. Soc. 137 3540Google Scholar

    [47]

    Guo Z, Hong H, Yuan G, Qian H, Li B, Cao Y, Wang W, Wu C X, Chen H 2020 Phys. Rev. Lett. 125 198101Google Scholar

    [48]

    Strick T, Allemand J F, Bensimon D, Croquette V 1998 Biophys. J. 74 2016Google Scholar

    [49]

    Revyakin A, Ebright R H, Strick T R 2004 Proc. Natl. Acad. Sci. U. S. A. 101 4776Google Scholar

    [50]

    Revyakin A, Ebright R H, Strick T R 2005 Nat. Methods 2 127Google Scholar

    [51]

    Yu L, Winkelman J T, Pukhrambam C, Strick T R, Nickels B E, Ebright R H 2017 eLife 6 e32038Google Scholar

    [52]

    Smith S B, Cui Y, Bustamante C 1996 Science 271 795Google Scholar

    [53]

    Roeder R G 2019 Nat Struct. Mol. Biol. 26 783Google Scholar

    [54]

    Pomerantz R T, O’Donnell M 2010 Science 327 590Google Scholar

    [55]

    Merrikh H, Machón C, Grainger W H, Grossman A D, Soultanas P 2011 Nature 470 554Google Scholar

    [56]

    Tomko E J, Fishburn J, Hahn S, Galburt E A 2017 Nat Struct. Mol. Biol. 24 1139Google Scholar

    [57]

    Revyakin A, Liu C, Ebright R H, Strick T R 2006 Science 314 1139Google Scholar

    [58]

    Kapanidis A N, Margeat E, Ho S O, Kortkhonjia E, Weiss S, Ebright R H 2006 Science 314 1144Google Scholar

    [59]

    Lerner E, Chung S, Allen B L, et al. 2016 Proc. Natl. Acad. Sci. U. S. A. 113 6562Google Scholar

    [60]

    Wang D, Bushnell D A, Huang X, Westover K D, Levitt M, Kornberg R D 2009 Science 324 1203Google Scholar

    [61]

    Zhang Y, Han W, Wang L, Wang H, Jia Q, Chen T, Wang S, Li M 2023 J. Phys. Chem. B 127 2909Google Scholar

    [62]

    Zhu C, Guo X, Dumas P, Takacs M, Abdelkareem M, Broeck A V, Saint-André C, Papai G, Crucifix C, Ortiz J, Weixlbaumer A 2022 Nat. Commun. 13 1546Google Scholar

    [63]

    Ray-Soni A, Bellecourt M J, Landick R 2016 Annu. Rev. Biochem. 85 319Google Scholar

    [64]

    Kim M, Vasiljeva L, Rando O J, Zhelkovsky A, Moore C, Buratowski S 2006 Mol. Cell 24 723Google Scholar

    [65]

    Arndt K M, Reines D 2015 Annu. Rev. Biochem. 84 381Google Scholar

    [66]

    Fazal F M, Meng C A, Murakami K, Kornberg R D, Block S M 2015 Nature 525 274Google Scholar

    [67]

    Wang S, Han Z, Libri D, Porrua O, Strick T R 2019 Nat. Commun. 10 1545Google Scholar

    [68]

    Klein H L, Ang K K, Arkin M R, et al. 2019 Microbial. Cell 6 65Google Scholar

    [69]

    王爽, 郑海子, 赵振业, 陆越, 徐春华 2013 62 168703Google Scholar

    Wang S, Zheng H Z, Zhao Z Y, Lu Y, Xu C H 2013 Acta Phys. Sin. 62 168703Google Scholar

    [70]

    Graves E T, Duboc C, Fan J, Stransky F, Leroux-Coyau M, Strick T R 2015 Nat. Struct. Mol. Biol. 22 452Google Scholar

  • 图 1  单分子磁镊操控技术示意图

    Fig. 1.  Schematic for single-molecule magnetic trap.

    图 2  单分子磁镊旋转操控DNA超螺旋

    Fig. 2.  Manipulation of DNA supercoils via single-molecule magnetic trap.

    图 3  单分子磁镊旋转操控方法研究转录动力学 (a) 研究方法示意图; (b) 典型转录曲线(起始(RPitc)、延伸(RDe)和终止)

    Fig. 3.  Transcription kinetics characterized via single-molecule magnetic trap: (a) Schematic of the methodology; (b) a typical transcription trajectory showing initiation (RPitc), elongation (RDe) and termination.

    图 4  单分子磁镊操控技术和单分子荧光成像技术联用方案 (a)方案示意图; (b)磁镊监测转录动力学过程; (c)单分子荧光方法同步观测RNAP、Mfd和RNA的时空分布[68]

    Fig. 4.  Schematic for combination of single-molecule magnetic trap and single-molecule fluorescence imaging: (a) Schematic of the assay; (b) transcription kinetics characterized via single-molecule magnetic trap; (c) simultaneous detection of RNAP, Mfd and RNA via single-molecule fluorescence assay[68].

    Baidu
  • [1]

    Watson J D, Crick F H C 1953 Nature 171 737Google Scholar

    [2]

    Watson J D, Crick F H C 1953 Nature 171 964Google Scholar

    [3]

    Crick F 1970 Nature 227 561Google Scholar

    [4]

    Monod J, Changeux J P, Jacob F 1963 J. Mol. Biol. 6 306Google Scholar

    [5]

    Monod J, Wyman J, Changeux J P 1965 J. Mol. Biol. 12 88Google Scholar

    [6]

    Zhang G, Campbell E A, Minakhin L, Richter C, Severinov K, Darst S A 1999 Cell 98 811Google Scholar

    [7]

    Gnatt A L, Cramer P, Fu J, Bushnell D A, Kornberg R D 2001 Science 292 1876Google Scholar

    [8]

    Chen X, Yin X, Li J, Wu Z, Qi Y, Wang X, Liu W, Xu Y 2021 Science 372 eabg0635Google Scholar

    [9]

    Chen X, Qi Y, Wu Z, et al. 2021 Science 372 eaba8490Google Scholar

    [10]

    Huang K, Wu X X, Fang C L, et al. 2021 Science 374 1579Google Scholar

    [11]

    Komissarova N, Becker J, Solter S, Kireeva M, Kashlev M 2002 Mol. Cell 10 1151Google Scholar

    [12]

    Skourti-Stathaki K, Proudfoot N J, Gromak N 2011 Mol. Cell 42 794Google Scholar

    [13]

    Hazelbaker D Z, Marquardt S, Wlotzka W, Buratowski S 2013 Mol. Cell 49 55Google Scholar

    [14]

    Kim S, Beltran B, Irnov I, Jacobs-Wagner C 2019 Cell 179 106Google Scholar

    [15]

    Abbondanzieri E A, Greenleaf W J, Shaevitz J W, Landick R, Block S M 2005 Nature 438 460Google Scholar

    [16]

    Chakraborty A, Wang D, Ebright Y W, et al. 2012 Science 337 591Google Scholar

    [17]

    Howan K, Smith A J, Westblade L F, Joly N, Grange W, Zorman S, Darst S A, Savery N J, Strick T R 2012 Nature 490 431Google Scholar

    [18]

    Ma J, Bai L, Wang M D 2013 Science 340 1580Google Scholar

    [19]

    Koh H R, Roy R, Sorokina M, Tang G Q, Nandakumar D, Patel S S, Ha T 2018 Mol. Cell 70 695Google Scholar

    [20]

    Rosen G A, Baek I, Friedman L J, Joo Y J, Buratowski S, Gelles J 2020 Proc. Natl. Acad. Sci. 117 32348Google Scholar

    [21]

    Neuman K C, Nagy A 2008 Nat. Methods 5 491Google Scholar

    [22]

    Roy R, Hohng S, Ha T J 2008 Nat. Methods 5 507Google Scholar

    [23]

    Gosse C, Croquette V 2002 Biophys. J. 82 3314Google Scholar

    [24]

    Cnossen J P, Dulin D, Dekker N H 2014 Rev. Sci. Instrum. 85 103712Google Scholar

    [25]

    Huhle A, Klaue D, Brutzer H, Daldrop P, Joo S, Otto O, Keyser U F, Seidel R 2015 Nat. Commun. 6 5885Google Scholar

    [26]

    Ashkin A, Dziedzic J M, Bjorkholm J E, Chu S 1986 Opt. Lett. 11 288Google Scholar

    [27]

    Ashkin A, Dziedzic J M 1987 Science 235 1517Google Scholar

    [28]

    Neuman K C, Block S M 2004 Rev. Sci. Instrum. 75 2787Google Scholar

    [29]

    Rief M, Gautel M, Oesterhelt F, Femandez J M, Gaub H E 1997 Science 276 1109Google Scholar

    [30]

    Yu H, Siewny M G W, Edwards D T, Sanders A W, Perkins T T 2017 Science 355 945Google Scholar

    [31]

    Jiao F, Cannon K S, Lin Y C, Gladfelter A S, Scheuring S 2020 Nat. Commu. 11 5062Google Scholar

    [32]

    Ha T, Enderle T, Ogletree D F, Chemla D S, Selvin P R, Weiss S 1996 Proc. Natl. Acad. Sci. 93 6264Google Scholar

    [33]

    Weiss S 1999 Science 283 1676Google Scholar

    [34]

    Lerner E, Cordes T, Ingargiola A, Alhadid Y, Chung S, Michalet X, Weiss S 2018 Science 359 eaan1133Google Scholar

    [35]

    Friedman L J, Chung J, Gelles J 2006 Biophys. J. 91 1023Google Scholar

    [36]

    Friedman L J, Gelles J 2015 Methods 86 27Google Scholar

    [37]

    Thompson M A, Lew M D, Moerner W 2012 Annu. Rev. Bioph. Biom. 41 321Google Scholar

    [38]

    Betzig E, Patterson G H, Sougrat R, Lindwasser O W, Olenych S, Bonifacino J S, Davidson M W, Lippincott-Schwartz J, Hess H F 2006 Science 313 1642Google Scholar

    [39]

    Bates M, Huang B, Dempsey G T, Zhuang X 2007 Science 317 1749Google Scholar

    [40]

    Seol Y, Neuman K C 2017 Combined Magnetic Tweezers, Micro-mirror Total Internal Reflection Fluorescence Microscope for Single-molecule Manipulation and Visualization Single Molecule Analysis (New York: Springer) pp297–316

    [41]

    Fan J, Leroux-Coyau M, Savery N J, Strick T R 2016 Nature 536 234Google Scholar

    [42]

    Comstock M J, Whitley K D, Jia H, Sokoloski J, Lohman T M, Ha T, Chemla Y R 2015 Science 348 352Google Scholar

    [43]

    Lionnet T, Allemand J F, Revyakin A, Strick T R, Saleh O A, Bensimon D, Croquette V 2011 Cold Spring Harb. Protoc. 2012 133Google Scholar

    [44]

    Smith S B, Finzi L, Bustamante C 1992 Science 258 1122Google Scholar

    [45]

    Strick T R, Allemand J F, Bensimon D, Bensimon A, Croquette V 1996 Science 271 1835Google Scholar

    [46]

    Chen H, Yuan G, Winardhi R S, Yao M, Popa I, Fernandez J M, Yan J 2015 J. Am. Chem. Soc. 137 3540Google Scholar

    [47]

    Guo Z, Hong H, Yuan G, Qian H, Li B, Cao Y, Wang W, Wu C X, Chen H 2020 Phys. Rev. Lett. 125 198101Google Scholar

    [48]

    Strick T, Allemand J F, Bensimon D, Croquette V 1998 Biophys. J. 74 2016Google Scholar

    [49]

    Revyakin A, Ebright R H, Strick T R 2004 Proc. Natl. Acad. Sci. U. S. A. 101 4776Google Scholar

    [50]

    Revyakin A, Ebright R H, Strick T R 2005 Nat. Methods 2 127Google Scholar

    [51]

    Yu L, Winkelman J T, Pukhrambam C, Strick T R, Nickels B E, Ebright R H 2017 eLife 6 e32038Google Scholar

    [52]

    Smith S B, Cui Y, Bustamante C 1996 Science 271 795Google Scholar

    [53]

    Roeder R G 2019 Nat Struct. Mol. Biol. 26 783Google Scholar

    [54]

    Pomerantz R T, O’Donnell M 2010 Science 327 590Google Scholar

    [55]

    Merrikh H, Machón C, Grainger W H, Grossman A D, Soultanas P 2011 Nature 470 554Google Scholar

    [56]

    Tomko E J, Fishburn J, Hahn S, Galburt E A 2017 Nat Struct. Mol. Biol. 24 1139Google Scholar

    [57]

    Revyakin A, Liu C, Ebright R H, Strick T R 2006 Science 314 1139Google Scholar

    [58]

    Kapanidis A N, Margeat E, Ho S O, Kortkhonjia E, Weiss S, Ebright R H 2006 Science 314 1144Google Scholar

    [59]

    Lerner E, Chung S, Allen B L, et al. 2016 Proc. Natl. Acad. Sci. U. S. A. 113 6562Google Scholar

    [60]

    Wang D, Bushnell D A, Huang X, Westover K D, Levitt M, Kornberg R D 2009 Science 324 1203Google Scholar

    [61]

    Zhang Y, Han W, Wang L, Wang H, Jia Q, Chen T, Wang S, Li M 2023 J. Phys. Chem. B 127 2909Google Scholar

    [62]

    Zhu C, Guo X, Dumas P, Takacs M, Abdelkareem M, Broeck A V, Saint-André C, Papai G, Crucifix C, Ortiz J, Weixlbaumer A 2022 Nat. Commun. 13 1546Google Scholar

    [63]

    Ray-Soni A, Bellecourt M J, Landick R 2016 Annu. Rev. Biochem. 85 319Google Scholar

    [64]

    Kim M, Vasiljeva L, Rando O J, Zhelkovsky A, Moore C, Buratowski S 2006 Mol. Cell 24 723Google Scholar

    [65]

    Arndt K M, Reines D 2015 Annu. Rev. Biochem. 84 381Google Scholar

    [66]

    Fazal F M, Meng C A, Murakami K, Kornberg R D, Block S M 2015 Nature 525 274Google Scholar

    [67]

    Wang S, Han Z, Libri D, Porrua O, Strick T R 2019 Nat. Commun. 10 1545Google Scholar

    [68]

    Klein H L, Ang K K, Arkin M R, et al. 2019 Microbial. Cell 6 65Google Scholar

    [69]

    王爽, 郑海子, 赵振业, 陆越, 徐春华 2013 62 168703Google Scholar

    Wang S, Zheng H Z, Zhao Z Y, Lu Y, Xu C H 2013 Acta Phys. Sin. 62 168703Google Scholar

    [70]

    Graves E T, Duboc C, Fan J, Stransky F, Leroux-Coyau M, Strick T R 2015 Nat. Struct. Mol. Biol. 22 452Google Scholar

  • [1] 章其林, 王瑞丰, 周同, 王允杰, 刘琪. 一维有序单链水红外吸收光谱的分子动力学模拟.  , 2023, 72(8): 084207. doi: 10.7498/aps.72.20222031
    [2] 张宇航, 薛振勇, 孙皓, 张珠伟, 陈虎. 酰基辅酶A结合蛋白去折叠动力学的单分子磁镊研究.  , 2023, 72(15): 158702. doi: 10.7498/aps.72.20230533
    [3] 陈玉江, 江五贵, 林演文, 郑盼. 一种新型的三壁碳纳米管螺旋振荡器:分子动力学模拟.  , 2020, 69(22): 228801. doi: 10.7498/aps.69.20200821
    [4] 李兴欣, 李四平. 退火温度调控多层折叠石墨烯力学性能的分子动力学模拟.  , 2020, 69(19): 196102. doi: 10.7498/aps.69.20200836
    [5] 王琼, 王凯歌, 孟康康, 孙聃, 韩仝雨, 高爱华. 基于单分子成像技术研究λ-DNA分子穿越微米通道端口的电动力学特性.  , 2020, 69(16): 168202. doi: 10.7498/aps.69.20200074
    [6] 姚洪斌, 蒋相站, 曹长虹, 李文亮. HD+分子的强场光解离动力学及其量子调控的理论研究.  , 2019, 68(17): 178201. doi: 10.7498/aps.68.20190400
    [7] 张国峰, 李斌, 陈瑞云, 秦成兵, 高岩, 肖连团, 贾锁堂. 单分子光学探针揭示易混聚合物受限纳米区域的动力学.  , 2019, 68(14): 148201. doi: 10.7498/aps.68.20190423
    [8] 马建兵, 翟永亮, 农大官, 李菁华, 付航, 张兴华, 李明, 陆颖, 徐春华. 基于片层光照明的新型单分子横向磁镊.  , 2018, 67(14): 148702. doi: 10.7498/aps.67.20180441
    [9] 滕翠娟, 陆越, 马建兵, 李明, 陆颖, 徐春华. 用单分子技术研究Sso7d与DNA的相互作用.  , 2018, 67(14): 148201. doi: 10.7498/aps.67.20180630
    [10] 陆越, 马建兵, 滕翠娟, 陆颖, 李明, 徐春华. 单分子动力学研究大肠杆菌单链结合蛋白与单链DNA的结合过程.  , 2018, 67(8): 088201. doi: 10.7498/aps.67.20180109
    [11] 李斌, 张国峰, 景明勇, 陈瑞云, 秦成兵, 高岩, 肖连团, 贾锁堂. 利用单分子光学探针测量幂律分布的聚合物动力学.  , 2016, 65(21): 218201. doi: 10.7498/aps.65.218201
    [12] 钱辉, 陈虎, 严洁. 软物质实验方法前沿:单分子操控技术.  , 2016, 65(18): 188706. doi: 10.7498/aps.65.188706
    [13] 王启东, 彭增辉, 刘永刚, 姚丽双, 任淦, 宣丽. 基于混合液晶分子动力学模拟比较液晶分子旋转黏度大小.  , 2015, 64(12): 126102. doi: 10.7498/aps.64.126102
    [14] 王参军. 基因转录调控系统中的色噪声诱导转化研究.  , 2012, 61(1): 010503. doi: 10.7498/aps.61.010503
    [15] 张国峰, 程峰钰, 贾锁堂, 孙建虎, 肖连团, 张芳. 室温单分子偶极取向与量子化再取向动力学实验研究.  , 2009, 58(4): 2364-2368. doi: 10.7498/aps.58.2364
    [16] 郑雨军, 张兆玉, 张西忠. 单分子体系动力学的高阶累积量相似性.  , 2009, 58(12): 8194-8198. doi: 10.7498/aps.58.8194
    [17] 张兴华, 肖彬, 侯锡苗, 徐春华, 王鹏业, 李明. 用单分子磁镊研究顺铂导致的DNA凝聚.  , 2009, 58(6): 4301-4306. doi: 10.7498/aps.58.4301
    [18] 王 禹, 章林溪. 外力诱导吸附高分子单链的拉伸分子动力学研究.  , 2008, 57(5): 3281-3286. doi: 10.7498/aps.57.3281
    [19] 曹莉霞, 王崇愚. α-Fe裂纹的分子动力学研究.  , 2007, 56(1): 413-422. doi: 10.7498/aps.56.413
    [20] 李 瑞, 胡元中, 王 慧, 张宇军. 单壁碳纳米管在石墨基底上运动的分子动力学模拟.  , 2006, 55(10): 5455-5459. doi: 10.7498/aps.55.5455
计量
  • 文章访问数:  3349
  • PDF下载量:  132
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-04
  • 修回日期:  2023-08-15
  • 上网日期:  2023-09-08
  • 刊出日期:  2023-11-05

/

返回文章
返回
Baidu
map