-
单分子体系是一种典型的受限量子体系, 且由于其能级分立、轨道局域、化学拓展性强, 因而具有丰富的电子态、光子态以及自旋态, 这些分子体系中由量子力学决定的物态使得利用单分子作为未来量子信息的载体成为可能. 对单分子尺度量子态的探测和调控研究有利于我们“自下而上”精确构建量子器件. 由于单分子体系的尺寸限制, 宏观的表征手段难以对其进行精确地调控和探测. 扫描隧道显微镜具有高精度的实空间定位能力, 高分辨的成像和谱学能力, 可以实施原位的分子操纵, 还可以与多种外场和局域场表征技术联用, 是目前精确探测和调控分子尺度量子态特性的重要工具. 本文撷取这一领域较为代表性的进展, 介绍了基于扫描隧道显微学技术的表面吸附单分子及其相关结构中的量子态研究现状. 首先介绍了表面单分子体系量子态的制备手段, 然后分别重点介绍了单分子的局域磁自旋态以及单分子作为单光子源的光学特性. 对于石墨烯分子结构我们将其视为一种大分子的单分子体系, 分别从其拓扑电子态和自旋态的表征和调控两方面做了介绍. 最后总结并对单分子量子态研究未来的发展做了展望.Single molecular systems are typical quantum confinement systems, which have rich electronic states, photon states and spin states due to their discrete energy levels, localized orbitals and diverse chemical structures. The states determined by quantum mechanics in these molecular systems make it possible to serve as great physical entities for future quantum information technology. The detection and manipulation of quantum states on a single molecule scale are beneficial to the bottom-up construction of quantum devices. Owing to the highly limited spatial localization of single molecular systems, it is difficult to accurately address and manipulate them with conventional macroscopic characterization methods. Scanning tunneling microscope (STM) is such a powerful tool that it can achieve high-resolution real-space imaging as well as spectroscopic investigation, with the ability to in-situ manipulating the individual atoms or molecules. It can also work jointly with various near-field or external field characterization techniques, making it a most important technique for precisely detecting and manipulating quantum properties at a single molecule level. In this paper, we review recent research progress of quantum states of surface-supported single molecules and relevant structures based on scanning tunneling microscopy. We start from the methods for the synthesis of molecular structures with desired quantum states, and then we review the recent advances in the local spin states for single molecular systems and the optical properties of single molecules serving as a single-photon source. An emerging family of molecular nanographene systems showing intriguing topological properties and magnetic properties is also reviewed. In the last part, we summarize the research progress made recently and prospect the future development of the quantum states at a single molecular level.
-
Keywords:
- scanning tunneling microscope /
- single molecule /
- quantum states /
- spin /
- single-photon source /
- topological states
[1] Metzger R M 1999 Acc. Chem. Res. 32 950Google Scholar
[2] Joachim C, Gimzewski J K, Aviram A 2000 Nature 408 541Google Scholar
[3] Binnig G, Rohrer H, Salvan F, Gerber C, Baro A 1985 Surf. Sci. 157 L373Google Scholar
[4] Eigler D M, Schweizer E K 1990 Nature 344 524Google Scholar
[5] Kempkes S N, Slot M R, Freeney S E, Zevenhuizen S J M, Vanmaekelbergh D, Swart I, Smith C M 2019 Nat. Phys. 15 127Google Scholar
[6] Slot M R, Gardenier T S, Jacobse P H, van Miert G C P, Kempkes S N, Zevenhuizen S J M, Smith C M, Vanmaekelbergh D, Swart I 2017 Nat. Phys. 13 672Google Scholar
[7] Kempkes S N, Slot M R, van den Broeke J J, et al. 2019 Nat. Mater. 18 1292Google Scholar
[8] Khajetoorians A A, Wegner D, Otte A F, Swart I 2019 Nat. Rev. Phys. 1 703Google Scholar
[9] Verlhac B, Bachellier N, Garnier L, et al. 2019 Science 366 623Google Scholar
[10] Ho W 2002 J. Chem. Phys. 117 11033Google Scholar
[11] Czap G, Wagner P J, Li J, Xue F, Yao J, Wu R, Ho W 2019 Phys. Rev. Lett. 123 106803Google Scholar
[12] Czap G, Wagner P J, Xue F, Gu L, Li J, Yao J, Wu R, Ho W 2019 Science 364 670Google Scholar
[13] Yu P, Kocic N, Repp J, Siegert B, Donarini A 2017 Phys. Rev. Lett. 119 056801Google Scholar
[14] Chiang C L, Xu C, Han Z, Ho W 2014 Science 344 885Google Scholar
[15] Han Z, Czap G, Chiang C L, Xu C, Wagner P J, Wei X, Zhang Y, Wu R, Ho W 2017 Science 358 206Google Scholar
[16] Wortmann D, Heinze S, Kurz P, Bihlmayer G, Blugel S 2001 Phys. Rev. Lett. 86 4132Google Scholar
[17] Wulfhekel W, Kirschner J 2007 Annu. Rev. Mater. Res. 37 69Google Scholar
[18] Bode M 2003 Rep. Prog. Phys. 66 523Google Scholar
[19] Zhao H, Manna S, Porter Z, Chen X, Uzdejczyk A, Moodera J, Wang Z, Wilson S D, Zeljkovic I 2019 Nat. Phys. 15 1267Google Scholar
[20] Zhang J, Chen P, Yuan B, Ji W, Cheng Z, Qiu X 2013 Science 342 611Google Scholar
[21] Gross L, Mohn F, Moll N, Liljeroth P, Meyer G 2009 Science 325 1110Google Scholar
[22] Gross L, Mohn F, Moll N, Schuler B, Criado A, Guitian E, Pena D, Gourdon A, Meyer G 2012 Science 337 1326Google Scholar
[23] Sweetman A, Jarvis S, Danza R, Bamidele J, Kantorovich L, Moriarty P 2011 Phys. Rev. B 84 085426Google Scholar
[24] Cocker T L, Jelic V, Gupta M, et al. 2013 Nat. Photon. 7 620Google Scholar
[25] Luo Y, Jelic V, Chen G, Nguyen P H, Liu Y J R, Calzada J A M, Mildenberger D J, Hegmann F A 2020 Phys. Rev. B 102 205417Google Scholar
[26] Yoshioka K, Katayama I, Arashida Y, Ban A, Kawada Y, Konishi K, Takahashi H, Takeda J 2018 Nano Lett 18 5198Google Scholar
[27] Jelic V, Iwaszczuk K, Nguyen P H, et al. 2017 Nat. Phys. 13 591Google Scholar
[28] Yoshida S, Arashida Y, Hirori H, Tachizaki T, Taninaka A, Ueno H, Takeuchi O, Shigekawa H 2021 ACS Photonics 8 315Google Scholar
[29] Zrimsek A B, Chiang N, Mattei M, Zaleski S, McAnally M O, Chapman C T, Henry A I, Schatz G C, Van Duyne R P 2017 Chem. Rev. 117 7583Google Scholar
[30] Ding S Y, Yi J, Li J F, Ren B, Wu D Y, Panneerselvam R, Tian Z Q 2016 Nat. Rev. Mater. 1 16021Google Scholar
[31] Xu J, Zhu X, Tan S, Zhang Y, Li B, Tian Y, Shan H, Cui X, Zhao A, Dong Z, Yang J, Luo Y, Wang B, Hou J G 2021 Science 371 818Google Scholar
[32] Zhang R, Zhang Y, Dong Z C, Jiang S, Zhang C, Chen L G, Zhang L, Liao Y, Aizpurua J, Luo Y, Yang J L, Hou J G 2013 Nature 498 82Google Scholar
[33] Jiang S, Zhang Y, Zhang R, Hu C, Liao M, Luo Y, Yang J, Dong Z, Hou J G 2015 Nat. Nanotechnol. 10 865Google Scholar
[34] Dong Z C, Zhang X L, Gao H Y, Luo Y, Zhang C, Chen L G, Zhang R, Tao X, Zhang Y, Yang J L, Hou J G 2009 Nat. Photon. 4 50Google Scholar
[35] Zhang Y, Meng Q S, Zhang L, et al. 2017 Nat. Commun. 8 15225Google Scholar
[36] Kong F F, Tian X J, Zhang Y, et al. 2021 Nat. Commun. 12 1280Google Scholar
[37] Zhang L, Yu Y J, Chen L G, et al. 2017 Nat. Commun. 8 580Google Scholar
[38] Zhang Y, Yang B, Ghafoor A, Zhang Y, Zhang Y F, Wang R P, Yang J L, Luo Y, Dong Z C, Hou J G 2019 Natl. Sci. Rev. 6 1169Google Scholar
[39] Zhang X, Wolf C, Wang Y, Aubin H, Bilgeri T, Willke P, Heinrich A J, Choi T 2022 Nat. Chem. 14 59
[40] Bienfait A, Pla J J, Kubo Y, et al. 2016 Nat. Nanotechnol. 11 253Google Scholar
[41] Baumann S, Paul W, Choi T, Lutz C P, Ardavan A, Heinrich A J 2015 Science 350 417Google Scholar
[42] Song H, Kim Y, Jang Y H, Jeong H, Reed M A, Lee T 2009 Nature 462 1039Google Scholar
[43] Noginov M A, Zhu G, Belgrave A M, Bakker R, Shalaev V M, Narimanov E E, Stout S, Herz E, Suteewong T, Wiesner U 2009 Nature 460 1110Google Scholar
[44] Franke K J, Schulze G, Pascual J I 2011 Science 332 940Google Scholar
[45] Roch N, Florens S, Bouchiat V, Wernsdorfer W, Balestro F 2008 Nature 453 633Google Scholar
[46] Yoshida Y, Yang H H, Huang H S, et al. 2014 J. Chem. Phys. 141 114701Google Scholar
[47] Li X, Zhu L, Li B, Li J, Gao P, Yang L, Zhao A, Luo Y, Hou J, Zheng X, Wang B, Yang J 2020 Nat. Commun. 11 2566Google Scholar
[48] Zhao A, Li Q, Chen L, Xiang H, Wang W, Pan S, Wang B, Xiao X, Yang J, Hou J G, Zhu Q 2005 Science 309 1542Google Scholar
[49] Li R, Li N, Wang H, Weismann A, Zhang Y, Hou S, Wu K, Wang Y 2018 Chem. Commun. 54 9135Google Scholar
[50] Cai J, Ruffieux P, Jaafar R, Bieri M, Braun T, Blankenburg S, Muoth M, Seitsonen A P, Saleh M, Feng X, Müllen K, Fasel R 2010 Nature 466 470Google Scholar
[51] Moreno C, Vilas-Varela M, Kretz B, et al. 2018 Science 360 199Google Scholar
[52] Slota M, Keerthi A, Myers W K, et al. 2018 Nature 557 691Google Scholar
[53] Sun Q, Zhang R Y, Qiu J, Liu R, Xu W 2018 Adv. Mater. 30 1705630Google Scholar
[54] Yano Y, Mitoma N, Ito H, Itami K 2020 J. Org. Chem. 85 4Google Scholar
[55] Clair S, de Oteyza D G 2019 Chem. Rev. 119 4717Google Scholar
[56] Hao Z L, Zhang H, Ruan Z L, Yan C X, Lu J C, Cai J M 2020 Chem. Nano Mat. 6 493Google Scholar
[57] Su X, Xue Z, Li G, Yu P 2018 Nano Lett. 18 5744Google Scholar
[58] Du Q, Pu W, Sun Z, Yu P 2020 J. Phys. Chem. Lett. 11 5022Google Scholar
[59] Li J, Sanz S, Merino-Diez N, Vilas-Varela M, Garcia-Lekue A, Corso M, de Oteyza D G, Frederiksen T, Pena D, Pascual J I 2021 Nat. Commun. 12 5538Google Scholar
[60] Lounis B, Moerner W E 2000 Nature 407 491Google Scholar
[61] Santori C, Fattal D, Vuckovic J, Solomon G S, Yamamoto Y 2002 Nature 419 594Google Scholar
[62] Sangouard N, Simon C, Minář J, Zbinden H, de Riedmatten H, Gisin N 2007 Phys. Rev. A 76 050301Google Scholar
[63] Zhong H S, Li Y, Li W, Peng L C, Su Z E, Hu Y, He Y M, Ding X, Zhang W J, Li H, Zhang L, Wang Z, You L X, Wang X L, Jiang X, Li L, Chen Y A, Liu N L, Lu C Y, Pan J W 2018 Phys. Rev. Lett. 121 250505Google Scholar
[64] Wang Y F, Li J F, Zhang S C, Su K Y, Zhou Y R, Liao K Y, Du S W, Yan H, Zhu S L 2019 Nat. Photon. 13 346Google Scholar
[65] Wang H, He Y M, Chung T H, Hu H, Yu Y, Chen S, Ding X, Chen M C, Qin J, Yang X X, Liu R Z, Duan Z C, Li J P, Gerhardt S, Winkler K, Jurkat J, Wang L J, Gregersen N, Huo Y H, Dai Q, Yu S Y, Hofling S, Lu C Y, Pan J W 2019 Nat. Photon. 13 770Google Scholar
[66] Rudolph T 2017 APL Photonics 2 030901Google Scholar
[67] Koenderink A F 2017 ACS Photonics 4 710Google Scholar
[68] Raha M, Chen S T, Phenicie C M, Ourari S, Dibos A M, Thompson J D 2020 Nat. Commun. 11 1605Google Scholar
[69] Dibos M, Raha M, Phenicie C M, Thompson J D 2018 Phys. Rev. Lett. 120 243601Google Scholar
[70] Wang H, Hu H, Chung T H, Qin J, Yang X X, Li J P, Liu R Z, Zhong H S, He Y M, Ding X, Deng Y H, Dai Q, Huo Y H, Hofling S, Lu C Y, Pan J W 2019 Phys. Rev. Lett. 122 113602Google Scholar
[71] Tomm N, Javadi A, Antoniadis N O, Najer D, Lobl M C, Korsch A R, Schott R, Valentin S R, Wieck A D, Ludwig A, Warburton R J 2021 Nat. Nanotechnol. 16 399Google Scholar
[72] Senellart P, Solomon G, White A 2017 Nat. Nanotechnol. 12 1026Google Scholar
[73] Tawfik S A, Ali S, Fronzi M, Kianinia M, Tran T T, Stampfl C, Aharonovich I, Toth M, Ford M J 2017 Nanoscale 9 13575Google Scholar
[74] Kinkhabwala A, Yu Z, Fan S, Avlasevich Y, Müllen K, Moerner W E 2009 Nat. Photon. 3 654Google Scholar
[75] Dolezal J, Canola S, Merino P, Svec M 2021 ACS Nano 15 7694Google Scholar
[76] Zhang Y, Luo Y, Zhang Y, Yu Y J, Kuang Y M, Zhang L, Meng Q S, Luo Y, Yang J L, Dong Z C, Hou J G 2016 Nature 531 623Google Scholar
[77] Dolezal J, Merino P, Redondo J, Ondic L, Cahlik A, Svec M 2019 Nano Lett 19 8605Google Scholar
[78] Dolezal J, Mutombo P, Nachtigallova D, Jelinek P, Merino P, Svec M 2020 ACS Nano 14 8931Google Scholar
[79] Uemura T, Akai-Kasaya M, Saito A, Aono M, Kuwahara Y 2008 Surf. and Interf. Anal. 40 1050Google Scholar
[80] Uemura T, Furumoto M, Nakano T, Akai-Kasaya M, Saito A, Aono M, Kuwahara Y 2007 Chem. Phys. Lett. 448 232Google Scholar
[81] Qiao X, Yuan P, Ma D, Ahamad T, Alshehri S M 2017 Org. Electron. 46 1Google Scholar
[82] Miwa K, Sakaue M, Kasai H 2013 Nanoscale Res. Lett. 8 204Google Scholar
[83] Chen G, Luo Y, Gao H, Jiang J, Yu Y, Zhang L, Zhang Y, Li X, Zhang Z, Dong Z 2019 Phys. Rev. Lett. 122 177401Google Scholar
[84] Luo Y, Chen G, Zhang Y, Zhang L, Yu Y, Kong F, Tian X, Zhang Y, Shan C, Luo Y, Yang J, Sandoghdar V, Dong Z, Hou J G 2019 Phys. Rev. Lett. 122 233901Google Scholar
[85] Yang B, Chen G, Ghafoor A, Zhang Y, Zhang Y, Zhang Y, Luo Y, Yang J, Sandoghdar V, Aizpurua J, Dong Z, Hou J G 2020 Nat. Photon. 14 693Google Scholar
[86] Imada H, Imai-Imada M, Miwa K, Yamane H, Iwasa T, Tanaka Y, Toriumi N, Kimura K, Yokoshi N, Muranaka A, Uchiyama M, Taketsugu T, Kato Y K, Ishihara H, Kim Y 2021 Science 373 95Google Scholar
[87] Chen J, Reed M A, Rawlett A M, Tour J M 1999 Science 286 1550Google Scholar
[88] Yao Z, Postma H W C, Balents L, Dekker C 1999 Nature 402 273Google Scholar
[89] Reed M A, Zhou C, Deshpande M R, Muller C J, Burgin T P, Jones L, Tour J M 1998 Annals of the New York Academy of Sciences 852 133Google Scholar
[90] Sessoli R, Gatteschi D, Caneschi A, Novak M A 1993 Nature 365 141Google Scholar
[91] Zhang Z, Wang Y, Wang H, Liu H, Dong L 2021 Nanoscale Res. Lett. 16 77Google Scholar
[92] Wrachtrup J, von Borczyskowski C, Bernard J, Orrit M, Brown R 1993 Nature 363 244Google Scholar
[93] Kohler J, Disselhorst J A J M, Donckers M C J M, Groenen E J J, Schmidt J, Moerner W E 1993 Nature 363 242Google Scholar
[94] Bayliss S L, Laorenza D W, Mintun P J, Kovos B D, Freedman D E, Awschalom D D 2020 Science 370 1309Google Scholar
[95] Rugar D, Budakian R, Mamin H J, Chui B W 2004 Nature 430 329Google Scholar
[96] Fan T, Tsifrinovich V I 2011 J. Comput. Theor. Nanos. 8 503Google Scholar
[97] Sidles J A, Garbini J L, Bruland K J, Rugar D, Züger O, Hoen S, Yannoni C S 1995 Rev. Mod. Phys. 67 249Google Scholar
[98] Lovchinsky I, Sushkov A O, Urbach E, de Leon N P, Choi S, De Greve K, Evans R, Gertner R, Bersin E, Muller C, McGuinness L, Jelezko F, Walsworth R L, Park H, Lukin M D 2016 Science 351 836Google Scholar
[99] Gehring P, Thijssen J M, van der Zant H S J 2019 Nat. Rev. Phys. 1 381Google Scholar
[100] She L M, Shen Z T, Xie Z Y, Wang L M, Song Y H, Wang X S, Jia Y, Zhang Z Y, Zhang W F 2021 arXiv: 2109.11193
[101] Liu L, Yang K, Jiang Y, Song B, Xiao W, Li L, Zhou H, Wang Y, Du S, Ouyang M, Hofer W A, Castro Neto A H, Gao H J 2013 Sci. Rep. 3 1210Google Scholar
[102] Komeda T, Isshiki H, Liu J, Zhang Y F, Lorente N, Katoh K, Breedlove B K, Yamashita M 2011 Nat. Commun. 2 217Google Scholar
[103] Liu J, Isshiki H, Katoh K, Morita T, Breedlove B K, Yamashita M, Komeda T 2013 J. Am. Chem. Soc. 135 651Google Scholar
[104] Zhou J, Sun Q 2011 J. Am. Chem. Soc. 133 15113Google Scholar
[105] Rumetshofer M, Bauernfeind D, Arrigoni E, von der Linden W 2019 Phys. Rev. B 99 045148Google Scholar
[106] Hong I P, Li N, Zhang Y J, Wang H, Song H J, Bai M L, Zhou X, Li J L, Gu G C, Zhang X, Chen M, Gottfried J M, Wang D, Lu J T, Peng L M, Hou S M, Berndt R, Wu K, Wang Y F 2016 Chem. Commun. 52 10338Google Scholar
[107] Ormaza M, Abufager P, Verlhac B, Bachellier N, Bocquet M L, Lorente N, Limot L 2017 Nat. Commun. 8 1974Google Scholar
[108] Xing Y Q, Chen H, Hu B, Ye Y H, Hofer W A, Gao H J 2021 Nano. Res. 15 1466
[109] Wang X Y, Narita A, Mullen K 2018 Nat. Rev. Chem. 2 0100Google Scholar
[110] Zhou X H, Yu G 2020 Adv. Mater. 32 1905957Google Scholar
[111] Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109Google Scholar
[112] Jia X T, Campos-Delgado J, Terrones M, Meunier V, Dresselhaus M S 2011 Nanoscale 3 86Google Scholar
[113] Ma Y J, Zhi L J 2022 Acta Phys. -Chim. Sin. 38 2101004Google Scholar
[114] Son Y W, Cohen M L, Louie S G 2006 Phys. Rev. Lett. 97 216803Google Scholar
[115] Talirz L, Sode H, Dumslaff T, Wang S, Sanchez-Valencia J R, Liu J, Shinde P, Pignedoli C A, Liang L, Meunier V, Plumb N C, Shi M, Feng X, Narita A, Mullen K, Fasel R, Ruffieux P 2017 ACS Nano 11 1380Google Scholar
[116] Llinas J P, Fairbrother A, Barin G B, Shi W, Lee K, Wu S, Choi B Y, Braganza R, Lear J, Kau N, Choi W, Chen C, Pedramrazi Z, Dumslaff T, Narita A, Feng X L, Mullen K, Fischer F, Zettl A, Ruffieux P, Yablonovitch E, Crommie M, Fasel R, Bokor J 2017 Nat. Commun. 8 633Google Scholar
[117] Liu J Z, Feng X L 2020 Ange. Chem. Int. Ed. 59 23386Google Scholar
[118] Cui P, Zhang Q, Zhu H, Li X, Wang W, Li Q, Zeng C, Zhang Z 2016 Phys. Rev. Lett. 116 026802Google Scholar
[119] Wang W L, Yazyev O V, Meng S, Kaxiras E 2009 Phys. Rev. Lett. 102 157201Google Scholar
[120] Avouris P, Chen Z H, Perebeinos V 2007 Nat. Nanotechnol. 2 605Google Scholar
[121] Cao T, Zhao F, Louie S G 2017 Phys. Rev. Lett. 119 076401Google Scholar
[122] Groning O, Wang S Y, Yao X L, Pignedoli C A, Barin G B, Daniels C, Cupo A, Meunier V, Feng X L, Narita A, Mullen K, Ruffieux P, Fasel R 2018 Nature 560 209Google Scholar
[123] Rizzo D J, Veber G, Cao T, Bronner C, Chen T, Zhao F, Rodriguez H, Louie S G, Crommie M F, Fischer F R 2018 Nature 560 204Google Scholar
[124] Li J, Sanz S, Corso M, Choi D J, Pena D, Frederiksen T, Pascual J I 2019 Nat. Commun. 10 200Google Scholar
[125] Mishra S, Catarina G, Wu F, Ortiz R, Jacob D, Eimre K, Ma J, Pignedoli C A, Feng X, Ruffieux P, Fernandez-Rossier J, Fasel R 2021 Nature 598 287Google Scholar
[126] Zheng Y, Li C, Zhao Y, Beyer D, Wang G, Xu C, Yue X, Chen Y, Guan D D, Li Y Y, Zheng H, Liu C, Luo W, Feng X, Wang S, Jia J 2020 Phys. Rev. Lett. 124 147206Google Scholar
[127] Gomes K K, Mar W, Ko W, Guinea F, Manoharan H C 2012 Nature 483 306Google Scholar
[128] Yin R, Ma L, Wang Z, Ma C, Chen X, Wang B 2020 ACS Nano 14 7513Google Scholar
[129] Zhang Y, Brar V W, Wang F, Girit C, Yayon Y, Panlasigui M, Zettl A, Crommie M F 2008 Nat. Phys. 4 627Google Scholar
[130] Watanabe N, Miyato Y, Tachiki M, Hayashi T, He D, Itozaki H 2012 Physics Procedia 36 300Google Scholar
[131] Assig M, Etzkorn M, Enders A, Stiepany W, Ast C R, Kern K 2013 Rev. Sci. Instrum. 84 033903Google Scholar
-
图 2 (a) CoPc的结构模型, 在实验中, 1个瓣的氢原子2和3被解离; (b) STM电流引起的脱氢示意图; (c) 不同温度下CoPc和脱氢CoPc(d-CoPc)的dI/dV谱; (d) STM图像显示了连续尖端诱导的CoPc在Au(111)上的脱氢[48]
Fig. 2. (a) Structural formula of the CoPc. Hydrogen atoms 2 and 3 of one lobe were dissociated in the experiments. (b) Diagram of the dehydrogenation induced by the STM current. (c) dI/dV spectra of CoPc and dehydrogenated CoPc (d-CoPc) at different temperatures. (d) STM images showing the sequential tip-induced dehydrogenation of a CoPc on Au(111)[48].
图 3 结合溶液和表面合成chGNRs的方法 (a)—(d) 溶液法合成不同原子宽度3, 1, w-chGNRs的分子前驱体1, 2, 3和3, 2, 8-chGNRs的前驱体4; (e)—(h) 利用4种分子前驱体分别靶向chGNRs的化学结构; (i)—(l) 在Au(111)表面合成chGNRs 的STM图像[59]
Fig. 3. Synthetic strategy to produce chGNRs combining solution and on-surface synthesis: (a)–(d) Solution synthesis protocols for producing molecular precursors 1, 2, 3, for the synthesis of 3, 1, w-chGNRs with different widths, and precursor 4 for 3, 2, 8-chGNRs; (e)–(h) targeted chemical structures of chGNRs by using the four molecular precursors in (a)–(d), respectively; (i)–(l) STM overview images of the chGNRs formed on a Au(111) surface[59].
图 4 (a) 诱导分子链发光的STML示意图[84]; (b) 多达12个单体ZnPc分子链的STM形貌图, 不同分子链的典型STML谱, ZnPc链超辐射态的实验光子图像[84]; (c) 不同长度的分子链光子发射的二阶相关函数测量结果[84]; (d) STM诱导的单分子发光示意图, 右边是分子结构的俯视图; 不同偏置电压下单个H2Pc分子的电致发光光谱; 恒定电流下Qx峰的归一化偏置电压和光强依赖关系图, 对数图在插图中[83].
Fig. 4. (a) Schematic of STML from ZnPc molecular chains[84]. (b) STM images of ZnPc molecular chains of up to 12 monomers, typical STML spectrum of different molecular chains, experimental photon images for the superradiant states of the ZnPc chains[84]. (c) Second-order correlation functions
$ {g}^{\left(2\right)}\left(\tau \right) $ for different ZnPc chains[84]. (d) Schematic of the STM-induced single-molecule emission. A top view of the molecular structure is given on the right. Electroluminescence spectra from a single H2Pc molecule at different bias voltages. Normalized bias-dependent intensity of the Qx peak at a constant current, with the logarithmic plot shown in the inset[83]图 5 (a) 针尖增强光致发光实验模型[85]; (b) ZnPC分子的STM图(左)和光子图(右)[85]; (c) 在光子图像(b)中虚白线AB的光子强度侧面图[85]; (d) STM-PL 实验示意图[86]; (e) H2Pc 分子的放大 STM 图, STM 图(左)中的圆圈显示的是光谱测量时针尖的位置, 其颜色与相应光谱的颜色匹配[86].
Fig. 5. (a) Schematic of the experimental of Sub-nanometre-resolved single-molecule TEPL[85]; (b) simultaneously recorded STM image (left) and TEPL photon image (right) of a single ZnPc molecule [85]; (c) photon intensity profile for the dashed white line AB in the photon image in b (right)[85]; (d) schematic depiction of STM-PL measurement[86]; (e) a magnified STM image of a H2Pc molecule, and the measurement tip positions for the spectra shown in STM image (left)are indicated with circles whose color matches that of the corresponding spectrum[86].
图 6 Au(111)上 (a) MnPc和 (b) H-MnPc的STM图像; (c) 由H原子吸附和解吸引起的MnPc分子中心记录的dI/dV谱的连续变化; (d) MnPc近藤特征在磁场下的演化[101]
Fig. 6. STM images of (a) MnPc and (b) H-MnPc on Au(111); (c) sequential variations of dI/dV spectra recorded at the center of a MnPc molecule induced by the adsorption and desorption of a H atom; (d) magnetic-field evolution of the Kondo feature of MnPc[101].
图 7 (a) 在 Au(111) 上的 TbPc2 分子的叶瓣上和中心处记录的 dI/dV谱. 插图: 组装结构中 TbPc2 分子的 STM 图像. (b) θ = 45°和θ = 30°的TbPc2分子的示意图和STM图像. (c) 在应用尖端脉冲之前和之后在 TbPc2 分子处获得的 dI/dV谱[102].
Fig. 7. (a) dI/dV spectra recorded at the lobe and center of a TbPc2 molecule on Au(111). Inset: STM image of TbPc2 molecules in the assembled structure. (b) Schematic illustrations and STM images of TbPc2 molecules with θ = 45° and θ = 30°. (c) dI/dV spectra acquired at a TbPc2 molecule before and after the application of a tip pulse[102].
图 8 (a) H2Pc和Al共沉积后的2个分子的化学结构模型和STM图. STM图左上角和右下角的分子分别是H2Pc和AlPc. (b) 将尖端置于AlPc瓣(黑色)、AlPc的Al中心(蓝色)和H2Pc瓣上方(黄色)得到的谱. (c) ClAlPc 的 STM 形貌图. (d) ClAlPc 瓣的 dI/dV谱. 蓝色: Cl 向上, 绿色: Cl 向下[106].
Fig. 8. (a) Chemical structure model and STM map of two molecules after co-deposition of H2Pc and Al. The top-left and bottom-right molecules of the STM image are H2Pc and AlPc, respectively. (b) Spectra taken with the tip placed above a lobe of AlPc (black dots), the Al center of AlPc (blue), and a lobe of H2Pc (yellow). (c) STM topograph of ClAlPc. (d) dI/dV spectra of a lobe of ClAlPc. Blue: Cl-up, green: Cl-down[106].
图 9 (a) 和 (b) 为组态I和II的 FePc分子STM图像, 分别显示组态II的“交叉”相对于组态I的分子中心旋转15° ; (c) 通过正常W端在构型I和II FePc分子上获得的dI/dV谱, 显示分子2种构型的电子状态显著不同; (d)通过超导Nb针尖在构型I和II FePc分子上获得的dI/dV谱; (e) Nb-绝缘体-FePc-Au隧道结结构以及其典型的dI/dV谱, 显示了Kondo特征峰; (f) Nb-FePc-绝缘体-Au隧道结结构, 以及其典型的dI/dV谱, 显示了2个间隙内YSR态[108]
Fig. 9. (a) and (b) Typical STM images of configuration I and II FePc molecules, respectively, showing the “cross” of configuration II rotates with respect to the molecular center by 15° compared with configuration I; (c) dI/dV spectra obtained on configuration I and II FePc molecules by a normal W tip, showing strikingly different electron states for the two configurations of the molecule; (d) dI/dV spectra obtained on configuration I and II FePc molecules by a superconducting Nb tip; (e) typical dI/dV spectra in a Nb-insulator-FePc-Au tunneling junction, showing a Kondo dip; (f) typical dI/dV spectra in a Nb-FePc-insulator-Au tunneling junction, showing two in-gap YSR states[108].
图 10 直线型边缘扩展的AGNR异质结构超晶格中的拓扑态 (a)化学结构和nc-AFM图像; (b)计算的能带结构; (c)直线型边缘扩展 AGNR 异质结构超晶格的局域态密度(LDOS)图 [122]
Fig. 10. Topological states in in-line edge-extended AGNR heterostructure superlattices: (a) The chemical structure and nc-AFM image; (b) the calculated band structure; (c) the local density of states (LDOS) maps of an in-line edge-extended AGNR heterostructure superlattice[122].
图 11 7—9 AGNR超晶格的拓扑态 (a) 化学结构模型以及不同结构的拓扑指数和高分辨率的STM图像; (b) 计算的石墨烯纳米带能带结构; (c) 7—9 AGNR超晶格的理论计算LDOS图以及对应的实验dI/dV 图[123]
Fig. 11. Topological states in a 7–9 AGNR superlattice: (a) The chemical structure and high-resolution STM image; (b) the calculated band structure; (c) the LDOS maps and corresponding experimental dI/dV diagram of a 7–9 AGNR superlattice[123].
图 12 (a) 3种石墨烯纳米结的DFT理论模拟. (b), (c) 分别为类型 1 和类型 2 结上明亮区域的近藤共振. 零偏置峰值主要在类型 1 结的4个 PC 环和类型 2 结的3个 ZZ 环上被检测到. (d) 类型 3 结上零偏压附近的双峰特征. (e) 具有额外 H 原子2个结的STM图. (f) 在电子诱导去除额外的 H 原子后STM图. (g), (h) 在脱氢过程之前(黑色)和之后(蓝色)的 PC1 和 ZZ2 区域的dI/dV谱. (g)中的插图显示了脱氢过程中的电流变化[124]
Fig. 12. (a) DFT theoretical simulation of three graphene nanojunctions. (b), (c) Kondo resonances over the bright regions of Type 1 and Type 2 junctions, respectively. The zero-bias peaks are mostly detected over four PC rings of Type 1 junctions and over three ZZ rings of Type 2 junctions. (d) Double-peak features around zero bias over Type 3 junctions. (e) STM image of two junctions with extra H atoms. (f) STM image after the removal of extra H atoms induced by electrons. (g), (h) The PC1 and ZZ2 regions of the dI/dV spectrum before (black) and after (blue) the dehydrogenation process. The inset in (g) shows the current during the dehydrogenation process [124].
图 13 (a), (b) N = 16 开放三角烯链(oTSC)和闭合三角烯环(cTSC) 的高分辨率 STM 图; (c) 在N = 16 oTSC和cTSC的每个单元上获得的dI/dV谱; (d) N = 6 oTSC和cTSC的价键固态自旋态, 占oTSC中S = 1/2边缘态, 而cTSC中没有; (e) 对于N = 2—16的oTSC, 由BLBQ模型ED 计算的自旋激发能量[125]
Fig. 13. (a), (b) High-resolution STM images of N = 16 oTSC (a) and cTSC (b); (c) dI/dV spectra acquired on every unit of the N = 16 oTSC (a) and cTSC (b); (d) the valence bond solid spin state for N = 6 oTSC and cTSC, accounting for S = 1/2 edge states in the oTSC and their absence in the cTSC; (e) For oTSC with N = 2–16, the spin excitation energy calculated from the ED of the BLBQ model[125].
图 14 (a) 在插图图像中彩色数字标记位置做的 dI/dV 谱. (b) 磁交换作用是每个单元中自旋密度最大的2个碳原子之间距离的函数. 插图为6种不同f-NG二聚体的自旋密度分布. 所有二聚体都呈现单线态基态. 蓝色和红色等表面表示自旋向上和自旋向下的密度. (c) 实验观察到4种命名为 C1—C4 的 f-NG 二聚体构型. 左侧, nc-AFM 图; 中间, 恒高的STM图, 右侧, 模拟 STM 图. (d) 在 (c) 中标记的位置做的 dI/dV 谱[126].
Fig. 14. (a) dI/dV spectra taken at the positions marked by colored numbers in the inset current image. (b) The magnetic exchange interaction J as a function of the distance between two carbon atoms with the strongest spin density in each unit. Inset: spin density distribution of six different f-NG dimers. All dimers exhibit a singlet ground state. Blue and red isosurfaces denote spin up and spin down density. (c) Experimental observed four configurations of f-NG dimers named as C1–C4. Left, nc-AFM frequency shift image; middle, constant-height current image; right, simulated STM image. (d) dI/dV spectra taken at the positions marked in (c)[126].
Termination type Zigzag
(N = Odd)Zigzag′
(N = Odd)Zigzag
(N = Even)Bearded
(N = Even)Unit cell shape Bulk symmetry Inversion/mirror Inversion/mirror Mirror Inversion Z2 $\frac{1+{\left(-1\right)}^{\left\lfloor {\tfrac{N}{3} } \right\rfloor+\left\lfloor {\tfrac{N+1}{2} } \right\rfloor} }{2}$ $\frac{1-{\left(-1\right)}^{\left\lfloor {\tfrac{N}{3} } \right\rfloor+\left\lfloor {\tfrac{N+1}{2} } \right\rfloor} }{2}$ $\frac{1-{\left(-1\right)}^{\left\lfloor {\tfrac{N}{3} } \right\rfloor} }{2}$ -
[1] Metzger R M 1999 Acc. Chem. Res. 32 950Google Scholar
[2] Joachim C, Gimzewski J K, Aviram A 2000 Nature 408 541Google Scholar
[3] Binnig G, Rohrer H, Salvan F, Gerber C, Baro A 1985 Surf. Sci. 157 L373Google Scholar
[4] Eigler D M, Schweizer E K 1990 Nature 344 524Google Scholar
[5] Kempkes S N, Slot M R, Freeney S E, Zevenhuizen S J M, Vanmaekelbergh D, Swart I, Smith C M 2019 Nat. Phys. 15 127Google Scholar
[6] Slot M R, Gardenier T S, Jacobse P H, van Miert G C P, Kempkes S N, Zevenhuizen S J M, Smith C M, Vanmaekelbergh D, Swart I 2017 Nat. Phys. 13 672Google Scholar
[7] Kempkes S N, Slot M R, van den Broeke J J, et al. 2019 Nat. Mater. 18 1292Google Scholar
[8] Khajetoorians A A, Wegner D, Otte A F, Swart I 2019 Nat. Rev. Phys. 1 703Google Scholar
[9] Verlhac B, Bachellier N, Garnier L, et al. 2019 Science 366 623Google Scholar
[10] Ho W 2002 J. Chem. Phys. 117 11033Google Scholar
[11] Czap G, Wagner P J, Li J, Xue F, Yao J, Wu R, Ho W 2019 Phys. Rev. Lett. 123 106803Google Scholar
[12] Czap G, Wagner P J, Xue F, Gu L, Li J, Yao J, Wu R, Ho W 2019 Science 364 670Google Scholar
[13] Yu P, Kocic N, Repp J, Siegert B, Donarini A 2017 Phys. Rev. Lett. 119 056801Google Scholar
[14] Chiang C L, Xu C, Han Z, Ho W 2014 Science 344 885Google Scholar
[15] Han Z, Czap G, Chiang C L, Xu C, Wagner P J, Wei X, Zhang Y, Wu R, Ho W 2017 Science 358 206Google Scholar
[16] Wortmann D, Heinze S, Kurz P, Bihlmayer G, Blugel S 2001 Phys. Rev. Lett. 86 4132Google Scholar
[17] Wulfhekel W, Kirschner J 2007 Annu. Rev. Mater. Res. 37 69Google Scholar
[18] Bode M 2003 Rep. Prog. Phys. 66 523Google Scholar
[19] Zhao H, Manna S, Porter Z, Chen X, Uzdejczyk A, Moodera J, Wang Z, Wilson S D, Zeljkovic I 2019 Nat. Phys. 15 1267Google Scholar
[20] Zhang J, Chen P, Yuan B, Ji W, Cheng Z, Qiu X 2013 Science 342 611Google Scholar
[21] Gross L, Mohn F, Moll N, Liljeroth P, Meyer G 2009 Science 325 1110Google Scholar
[22] Gross L, Mohn F, Moll N, Schuler B, Criado A, Guitian E, Pena D, Gourdon A, Meyer G 2012 Science 337 1326Google Scholar
[23] Sweetman A, Jarvis S, Danza R, Bamidele J, Kantorovich L, Moriarty P 2011 Phys. Rev. B 84 085426Google Scholar
[24] Cocker T L, Jelic V, Gupta M, et al. 2013 Nat. Photon. 7 620Google Scholar
[25] Luo Y, Jelic V, Chen G, Nguyen P H, Liu Y J R, Calzada J A M, Mildenberger D J, Hegmann F A 2020 Phys. Rev. B 102 205417Google Scholar
[26] Yoshioka K, Katayama I, Arashida Y, Ban A, Kawada Y, Konishi K, Takahashi H, Takeda J 2018 Nano Lett 18 5198Google Scholar
[27] Jelic V, Iwaszczuk K, Nguyen P H, et al. 2017 Nat. Phys. 13 591Google Scholar
[28] Yoshida S, Arashida Y, Hirori H, Tachizaki T, Taninaka A, Ueno H, Takeuchi O, Shigekawa H 2021 ACS Photonics 8 315Google Scholar
[29] Zrimsek A B, Chiang N, Mattei M, Zaleski S, McAnally M O, Chapman C T, Henry A I, Schatz G C, Van Duyne R P 2017 Chem. Rev. 117 7583Google Scholar
[30] Ding S Y, Yi J, Li J F, Ren B, Wu D Y, Panneerselvam R, Tian Z Q 2016 Nat. Rev. Mater. 1 16021Google Scholar
[31] Xu J, Zhu X, Tan S, Zhang Y, Li B, Tian Y, Shan H, Cui X, Zhao A, Dong Z, Yang J, Luo Y, Wang B, Hou J G 2021 Science 371 818Google Scholar
[32] Zhang R, Zhang Y, Dong Z C, Jiang S, Zhang C, Chen L G, Zhang L, Liao Y, Aizpurua J, Luo Y, Yang J L, Hou J G 2013 Nature 498 82Google Scholar
[33] Jiang S, Zhang Y, Zhang R, Hu C, Liao M, Luo Y, Yang J, Dong Z, Hou J G 2015 Nat. Nanotechnol. 10 865Google Scholar
[34] Dong Z C, Zhang X L, Gao H Y, Luo Y, Zhang C, Chen L G, Zhang R, Tao X, Zhang Y, Yang J L, Hou J G 2009 Nat. Photon. 4 50Google Scholar
[35] Zhang Y, Meng Q S, Zhang L, et al. 2017 Nat. Commun. 8 15225Google Scholar
[36] Kong F F, Tian X J, Zhang Y, et al. 2021 Nat. Commun. 12 1280Google Scholar
[37] Zhang L, Yu Y J, Chen L G, et al. 2017 Nat. Commun. 8 580Google Scholar
[38] Zhang Y, Yang B, Ghafoor A, Zhang Y, Zhang Y F, Wang R P, Yang J L, Luo Y, Dong Z C, Hou J G 2019 Natl. Sci. Rev. 6 1169Google Scholar
[39] Zhang X, Wolf C, Wang Y, Aubin H, Bilgeri T, Willke P, Heinrich A J, Choi T 2022 Nat. Chem. 14 59
[40] Bienfait A, Pla J J, Kubo Y, et al. 2016 Nat. Nanotechnol. 11 253Google Scholar
[41] Baumann S, Paul W, Choi T, Lutz C P, Ardavan A, Heinrich A J 2015 Science 350 417Google Scholar
[42] Song H, Kim Y, Jang Y H, Jeong H, Reed M A, Lee T 2009 Nature 462 1039Google Scholar
[43] Noginov M A, Zhu G, Belgrave A M, Bakker R, Shalaev V M, Narimanov E E, Stout S, Herz E, Suteewong T, Wiesner U 2009 Nature 460 1110Google Scholar
[44] Franke K J, Schulze G, Pascual J I 2011 Science 332 940Google Scholar
[45] Roch N, Florens S, Bouchiat V, Wernsdorfer W, Balestro F 2008 Nature 453 633Google Scholar
[46] Yoshida Y, Yang H H, Huang H S, et al. 2014 J. Chem. Phys. 141 114701Google Scholar
[47] Li X, Zhu L, Li B, Li J, Gao P, Yang L, Zhao A, Luo Y, Hou J, Zheng X, Wang B, Yang J 2020 Nat. Commun. 11 2566Google Scholar
[48] Zhao A, Li Q, Chen L, Xiang H, Wang W, Pan S, Wang B, Xiao X, Yang J, Hou J G, Zhu Q 2005 Science 309 1542Google Scholar
[49] Li R, Li N, Wang H, Weismann A, Zhang Y, Hou S, Wu K, Wang Y 2018 Chem. Commun. 54 9135Google Scholar
[50] Cai J, Ruffieux P, Jaafar R, Bieri M, Braun T, Blankenburg S, Muoth M, Seitsonen A P, Saleh M, Feng X, Müllen K, Fasel R 2010 Nature 466 470Google Scholar
[51] Moreno C, Vilas-Varela M, Kretz B, et al. 2018 Science 360 199Google Scholar
[52] Slota M, Keerthi A, Myers W K, et al. 2018 Nature 557 691Google Scholar
[53] Sun Q, Zhang R Y, Qiu J, Liu R, Xu W 2018 Adv. Mater. 30 1705630Google Scholar
[54] Yano Y, Mitoma N, Ito H, Itami K 2020 J. Org. Chem. 85 4Google Scholar
[55] Clair S, de Oteyza D G 2019 Chem. Rev. 119 4717Google Scholar
[56] Hao Z L, Zhang H, Ruan Z L, Yan C X, Lu J C, Cai J M 2020 Chem. Nano Mat. 6 493Google Scholar
[57] Su X, Xue Z, Li G, Yu P 2018 Nano Lett. 18 5744Google Scholar
[58] Du Q, Pu W, Sun Z, Yu P 2020 J. Phys. Chem. Lett. 11 5022Google Scholar
[59] Li J, Sanz S, Merino-Diez N, Vilas-Varela M, Garcia-Lekue A, Corso M, de Oteyza D G, Frederiksen T, Pena D, Pascual J I 2021 Nat. Commun. 12 5538Google Scholar
[60] Lounis B, Moerner W E 2000 Nature 407 491Google Scholar
[61] Santori C, Fattal D, Vuckovic J, Solomon G S, Yamamoto Y 2002 Nature 419 594Google Scholar
[62] Sangouard N, Simon C, Minář J, Zbinden H, de Riedmatten H, Gisin N 2007 Phys. Rev. A 76 050301Google Scholar
[63] Zhong H S, Li Y, Li W, Peng L C, Su Z E, Hu Y, He Y M, Ding X, Zhang W J, Li H, Zhang L, Wang Z, You L X, Wang X L, Jiang X, Li L, Chen Y A, Liu N L, Lu C Y, Pan J W 2018 Phys. Rev. Lett. 121 250505Google Scholar
[64] Wang Y F, Li J F, Zhang S C, Su K Y, Zhou Y R, Liao K Y, Du S W, Yan H, Zhu S L 2019 Nat. Photon. 13 346Google Scholar
[65] Wang H, He Y M, Chung T H, Hu H, Yu Y, Chen S, Ding X, Chen M C, Qin J, Yang X X, Liu R Z, Duan Z C, Li J P, Gerhardt S, Winkler K, Jurkat J, Wang L J, Gregersen N, Huo Y H, Dai Q, Yu S Y, Hofling S, Lu C Y, Pan J W 2019 Nat. Photon. 13 770Google Scholar
[66] Rudolph T 2017 APL Photonics 2 030901Google Scholar
[67] Koenderink A F 2017 ACS Photonics 4 710Google Scholar
[68] Raha M, Chen S T, Phenicie C M, Ourari S, Dibos A M, Thompson J D 2020 Nat. Commun. 11 1605Google Scholar
[69] Dibos M, Raha M, Phenicie C M, Thompson J D 2018 Phys. Rev. Lett. 120 243601Google Scholar
[70] Wang H, Hu H, Chung T H, Qin J, Yang X X, Li J P, Liu R Z, Zhong H S, He Y M, Ding X, Deng Y H, Dai Q, Huo Y H, Hofling S, Lu C Y, Pan J W 2019 Phys. Rev. Lett. 122 113602Google Scholar
[71] Tomm N, Javadi A, Antoniadis N O, Najer D, Lobl M C, Korsch A R, Schott R, Valentin S R, Wieck A D, Ludwig A, Warburton R J 2021 Nat. Nanotechnol. 16 399Google Scholar
[72] Senellart P, Solomon G, White A 2017 Nat. Nanotechnol. 12 1026Google Scholar
[73] Tawfik S A, Ali S, Fronzi M, Kianinia M, Tran T T, Stampfl C, Aharonovich I, Toth M, Ford M J 2017 Nanoscale 9 13575Google Scholar
[74] Kinkhabwala A, Yu Z, Fan S, Avlasevich Y, Müllen K, Moerner W E 2009 Nat. Photon. 3 654Google Scholar
[75] Dolezal J, Canola S, Merino P, Svec M 2021 ACS Nano 15 7694Google Scholar
[76] Zhang Y, Luo Y, Zhang Y, Yu Y J, Kuang Y M, Zhang L, Meng Q S, Luo Y, Yang J L, Dong Z C, Hou J G 2016 Nature 531 623Google Scholar
[77] Dolezal J, Merino P, Redondo J, Ondic L, Cahlik A, Svec M 2019 Nano Lett 19 8605Google Scholar
[78] Dolezal J, Mutombo P, Nachtigallova D, Jelinek P, Merino P, Svec M 2020 ACS Nano 14 8931Google Scholar
[79] Uemura T, Akai-Kasaya M, Saito A, Aono M, Kuwahara Y 2008 Surf. and Interf. Anal. 40 1050Google Scholar
[80] Uemura T, Furumoto M, Nakano T, Akai-Kasaya M, Saito A, Aono M, Kuwahara Y 2007 Chem. Phys. Lett. 448 232Google Scholar
[81] Qiao X, Yuan P, Ma D, Ahamad T, Alshehri S M 2017 Org. Electron. 46 1Google Scholar
[82] Miwa K, Sakaue M, Kasai H 2013 Nanoscale Res. Lett. 8 204Google Scholar
[83] Chen G, Luo Y, Gao H, Jiang J, Yu Y, Zhang L, Zhang Y, Li X, Zhang Z, Dong Z 2019 Phys. Rev. Lett. 122 177401Google Scholar
[84] Luo Y, Chen G, Zhang Y, Zhang L, Yu Y, Kong F, Tian X, Zhang Y, Shan C, Luo Y, Yang J, Sandoghdar V, Dong Z, Hou J G 2019 Phys. Rev. Lett. 122 233901Google Scholar
[85] Yang B, Chen G, Ghafoor A, Zhang Y, Zhang Y, Zhang Y, Luo Y, Yang J, Sandoghdar V, Aizpurua J, Dong Z, Hou J G 2020 Nat. Photon. 14 693Google Scholar
[86] Imada H, Imai-Imada M, Miwa K, Yamane H, Iwasa T, Tanaka Y, Toriumi N, Kimura K, Yokoshi N, Muranaka A, Uchiyama M, Taketsugu T, Kato Y K, Ishihara H, Kim Y 2021 Science 373 95Google Scholar
[87] Chen J, Reed M A, Rawlett A M, Tour J M 1999 Science 286 1550Google Scholar
[88] Yao Z, Postma H W C, Balents L, Dekker C 1999 Nature 402 273Google Scholar
[89] Reed M A, Zhou C, Deshpande M R, Muller C J, Burgin T P, Jones L, Tour J M 1998 Annals of the New York Academy of Sciences 852 133Google Scholar
[90] Sessoli R, Gatteschi D, Caneschi A, Novak M A 1993 Nature 365 141Google Scholar
[91] Zhang Z, Wang Y, Wang H, Liu H, Dong L 2021 Nanoscale Res. Lett. 16 77Google Scholar
[92] Wrachtrup J, von Borczyskowski C, Bernard J, Orrit M, Brown R 1993 Nature 363 244Google Scholar
[93] Kohler J, Disselhorst J A J M, Donckers M C J M, Groenen E J J, Schmidt J, Moerner W E 1993 Nature 363 242Google Scholar
[94] Bayliss S L, Laorenza D W, Mintun P J, Kovos B D, Freedman D E, Awschalom D D 2020 Science 370 1309Google Scholar
[95] Rugar D, Budakian R, Mamin H J, Chui B W 2004 Nature 430 329Google Scholar
[96] Fan T, Tsifrinovich V I 2011 J. Comput. Theor. Nanos. 8 503Google Scholar
[97] Sidles J A, Garbini J L, Bruland K J, Rugar D, Züger O, Hoen S, Yannoni C S 1995 Rev. Mod. Phys. 67 249Google Scholar
[98] Lovchinsky I, Sushkov A O, Urbach E, de Leon N P, Choi S, De Greve K, Evans R, Gertner R, Bersin E, Muller C, McGuinness L, Jelezko F, Walsworth R L, Park H, Lukin M D 2016 Science 351 836Google Scholar
[99] Gehring P, Thijssen J M, van der Zant H S J 2019 Nat. Rev. Phys. 1 381Google Scholar
[100] She L M, Shen Z T, Xie Z Y, Wang L M, Song Y H, Wang X S, Jia Y, Zhang Z Y, Zhang W F 2021 arXiv: 2109.11193
[101] Liu L, Yang K, Jiang Y, Song B, Xiao W, Li L, Zhou H, Wang Y, Du S, Ouyang M, Hofer W A, Castro Neto A H, Gao H J 2013 Sci. Rep. 3 1210Google Scholar
[102] Komeda T, Isshiki H, Liu J, Zhang Y F, Lorente N, Katoh K, Breedlove B K, Yamashita M 2011 Nat. Commun. 2 217Google Scholar
[103] Liu J, Isshiki H, Katoh K, Morita T, Breedlove B K, Yamashita M, Komeda T 2013 J. Am. Chem. Soc. 135 651Google Scholar
[104] Zhou J, Sun Q 2011 J. Am. Chem. Soc. 133 15113Google Scholar
[105] Rumetshofer M, Bauernfeind D, Arrigoni E, von der Linden W 2019 Phys. Rev. B 99 045148Google Scholar
[106] Hong I P, Li N, Zhang Y J, Wang H, Song H J, Bai M L, Zhou X, Li J L, Gu G C, Zhang X, Chen M, Gottfried J M, Wang D, Lu J T, Peng L M, Hou S M, Berndt R, Wu K, Wang Y F 2016 Chem. Commun. 52 10338Google Scholar
[107] Ormaza M, Abufager P, Verlhac B, Bachellier N, Bocquet M L, Lorente N, Limot L 2017 Nat. Commun. 8 1974Google Scholar
[108] Xing Y Q, Chen H, Hu B, Ye Y H, Hofer W A, Gao H J 2021 Nano. Res. 15 1466
[109] Wang X Y, Narita A, Mullen K 2018 Nat. Rev. Chem. 2 0100Google Scholar
[110] Zhou X H, Yu G 2020 Adv. Mater. 32 1905957Google Scholar
[111] Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109Google Scholar
[112] Jia X T, Campos-Delgado J, Terrones M, Meunier V, Dresselhaus M S 2011 Nanoscale 3 86Google Scholar
[113] Ma Y J, Zhi L J 2022 Acta Phys. -Chim. Sin. 38 2101004Google Scholar
[114] Son Y W, Cohen M L, Louie S G 2006 Phys. Rev. Lett. 97 216803Google Scholar
[115] Talirz L, Sode H, Dumslaff T, Wang S, Sanchez-Valencia J R, Liu J, Shinde P, Pignedoli C A, Liang L, Meunier V, Plumb N C, Shi M, Feng X, Narita A, Mullen K, Fasel R, Ruffieux P 2017 ACS Nano 11 1380Google Scholar
[116] Llinas J P, Fairbrother A, Barin G B, Shi W, Lee K, Wu S, Choi B Y, Braganza R, Lear J, Kau N, Choi W, Chen C, Pedramrazi Z, Dumslaff T, Narita A, Feng X L, Mullen K, Fischer F, Zettl A, Ruffieux P, Yablonovitch E, Crommie M, Fasel R, Bokor J 2017 Nat. Commun. 8 633Google Scholar
[117] Liu J Z, Feng X L 2020 Ange. Chem. Int. Ed. 59 23386Google Scholar
[118] Cui P, Zhang Q, Zhu H, Li X, Wang W, Li Q, Zeng C, Zhang Z 2016 Phys. Rev. Lett. 116 026802Google Scholar
[119] Wang W L, Yazyev O V, Meng S, Kaxiras E 2009 Phys. Rev. Lett. 102 157201Google Scholar
[120] Avouris P, Chen Z H, Perebeinos V 2007 Nat. Nanotechnol. 2 605Google Scholar
[121] Cao T, Zhao F, Louie S G 2017 Phys. Rev. Lett. 119 076401Google Scholar
[122] Groning O, Wang S Y, Yao X L, Pignedoli C A, Barin G B, Daniels C, Cupo A, Meunier V, Feng X L, Narita A, Mullen K, Ruffieux P, Fasel R 2018 Nature 560 209Google Scholar
[123] Rizzo D J, Veber G, Cao T, Bronner C, Chen T, Zhao F, Rodriguez H, Louie S G, Crommie M F, Fischer F R 2018 Nature 560 204Google Scholar
[124] Li J, Sanz S, Corso M, Choi D J, Pena D, Frederiksen T, Pascual J I 2019 Nat. Commun. 10 200Google Scholar
[125] Mishra S, Catarina G, Wu F, Ortiz R, Jacob D, Eimre K, Ma J, Pignedoli C A, Feng X, Ruffieux P, Fernandez-Rossier J, Fasel R 2021 Nature 598 287Google Scholar
[126] Zheng Y, Li C, Zhao Y, Beyer D, Wang G, Xu C, Yue X, Chen Y, Guan D D, Li Y Y, Zheng H, Liu C, Luo W, Feng X, Wang S, Jia J 2020 Phys. Rev. Lett. 124 147206Google Scholar
[127] Gomes K K, Mar W, Ko W, Guinea F, Manoharan H C 2012 Nature 483 306Google Scholar
[128] Yin R, Ma L, Wang Z, Ma C, Chen X, Wang B 2020 ACS Nano 14 7513Google Scholar
[129] Zhang Y, Brar V W, Wang F, Girit C, Yayon Y, Panlasigui M, Zettl A, Crommie M F 2008 Nat. Phys. 4 627Google Scholar
[130] Watanabe N, Miyato Y, Tachiki M, Hayashi T, He D, Itozaki H 2012 Physics Procedia 36 300Google Scholar
[131] Assig M, Etzkorn M, Enders A, Stiepany W, Ast C R, Kern K 2013 Rev. Sci. Instrum. 84 033903Google Scholar
计量
- 文章访问数: 7370
- PDF下载量: 207
- 被引次数: 0