-
Unlike the ductile materials, the failure seriously limits the strength of the brittle medium. To understand the mechanism of controlling the dynamic impact strength of diamond-SiC superhard composite under shock wave compression, the numerical simulation is conducted with a lattice-spring model that can describe the mechanical properties of diamond-SiC superhard composite quantitatively. For the simulation, the diamond-SiC superhard composite is constructed by different volume content of diamond and SiC particles. The obtainted shock wave profiles indicate that the dynamic impact strength first increases and then decreases with the increase of diamond content in the sample. The analysis based on the meso-scale damage pattern reveals that such a variation of dynamic impact strength corresponds to three damage evolution modes. When the diamond content increases to a value between 10%–50% in volume percentage, the long slip bands are first dominated, and then becomes short slip bands when the diamond content is 70%, and damage happens mainly in SiC matrix whereas most of the diamond particles are not damaged. When the diamond content is above a critical value of 70% in volume percentage, even the short slip bands are limited heavily, which makes it difficult to relax the shear stress on diamond particles and causes serious damage to diamond particles, finally results in the reduction of dynamic strength.
-
Keywords:
- diamond /
- SiC /
- superhard composite /
- dynamic strength /
- mesoscopic damage
[1] Liu Y S, Hu C H, Men J, Feng W, Cheng L F, Zhang L T 2015 J. Eur. Ceram. Soc. 35 2233
Google Scholar
[2] Zhao Z F, Liu Y S, Feng W, Zhang Q, Cheng L F, Zhang L T 2017 Diam. Relat. Mater. 74 1
Google Scholar
[3] Ekimov E A, Gavriliuk A G, Palosz B, Gierlotka S, Dluzewski P, Tatianin E, Kluev Y, Naletov M, Presz A 2000 Appl. Phys. Lett. 77 954
Google Scholar
[4] Yang Z L, He X B, Wu M, Zhang L, Ma A, Liu R J, Hu H F, Zhang Y D, Qu X H 2013 Ceram. Int. 39 3399
Google Scholar
[5] Zhao Y S, Qian J, Daemen L L, Pantea C, Zhang J Z, Voronin G A, Zerda T W 2004 Appl. Phys. Lett. 84 1356
Google Scholar
[6] Lu K 2016 Nature Rev. Mater. 1 16019
Google Scholar
[7] Huang Q, Yu D L, Xu B, Hu W T, Ma Y M, Wang Y B, Zhao Z S, Wen B, He J L, Liu Z Y, Tian Y J 2014 Nature 510 250
Google Scholar
[8] Cheng Z, Zhou H, Lu Q, Gao H, Lu L 2018 Science 362 1925
Google Scholar
[9] Yang M X, Yan D S, Yuan F P, Jiang P, Ma E, Wu X L 2018 PNAS 115 7224
Google Scholar
[10] Mayer G 2005 Science 310 1144
Google Scholar
[11] Weaver J C, Milliron G W, Miserez A, Evans-Lutterodt K, Herrera S, Gallana I, Mershon W J, Swanson B, Zavattieri P, DiMasi E, Kisailus D 2012 Science 336 1275
Google Scholar
[12] Lian Y P, Zhang X, Liu Y 2012 Theor. Appl. Mech. Lett. 2 021003
Google Scholar
[13] Gusev A A 2004 Phys. Rev. Lett. 93 034302
Google Scholar
[14] Yu Y, Wang W Q, He H L, Lu T C 2014 Phys. Rev. E 89 043309
Google Scholar
[15] Yu Y, Wang W Q, He H L, Jiang T L, Huan Q, Zhang F P, Li Y Q, Lu T C 2015 J. Appl. Phys. 117 125901
Google Scholar
[16] Núñez Valdez M, Umemoto K, Wentzcovitch R M 2012 Appl. Phys. Lett. 101 171902
Google Scholar
[17] Varshney D, Shriya S, Varshney M, Singh N, Khenata R 2015 J. Theor. Appl. Phys. 9 221
Google Scholar
[18] Griffith A A, Eng M V I 1921 Phil. Trans. R. Soc. Lond. A 221 163
Google Scholar
[19] Qu R T, Zhang Z F 2013 Sci. Rep. 3 1117
Google Scholar
[20] Barenblatt G I 1962 Adv. Appl. Mech. 7 55
Google Scholar
[21] Novikov N V, Dub S N 1991 J. Hard. Mater. 2 3
[22] 罗恩 B 著 (龚江宏 译) 2010 脆性固体断裂力学 (北京: 高等教育出版社) 第44, 45页
Lawn B (translated by Gong J H) 2010 Fracture of Brittle Solid (Beijing: Higher Education Press) pp44, 45 (in Chinese)
[23] Liu Y S, Hu C H, Feng W, Men J, Cheng L F, Zhang L T 2014 J. Eur. Ceram. Soc. 34 3489
Google Scholar
[24] Matthey B, Höhn S, Wolfrum A K, Mühle U, Motylenko M, Rafaja D, Michaelis A, Herrmann M 2017 J. Eur. Ceram. Soc. 37 1917
Google Scholar
[25] 姜太龙, 喻寅, 宦强, 李永强, 贺红亮 2015 64 188301
Google Scholar
Jiang T L, Yu Y, Huan Q, Li Y Q, He H L 2015 Acta Phys. Sin. 64 188301
Google Scholar
[26] Grady D E 1998 Mech. Mater. 29 181
Google Scholar
[27] Eremin M O 2016 Phys. Mesomech. 19 452
Google Scholar
[28] Lapin J, Štamborská M, Pelachová T, Bajana O 2018 Mater. Sci. Eng. A 721 1
Google Scholar
[29] Salamone S, Aghajanian M, Horner S E, Zheng J Q 2015 Adv. Ceram. Armor. XI 600 111
[30] Lasalvia J C, Campbell J, Swab J J, Mccauley J W 2010 JOM 62 16
[31] Petel O E, Ouellet S 2017 J. Appl. Phys. 122 025108
[32] Petel O E, Ouellet S, Loiseau J, Frost D L, Higgins A J 2015 Int. J. Impact Eng. 85 83
Google Scholar
[33] Petel O E, Ouellet S, Loiseau J, Marr B J, Frost D L, Higgins A J 2013 Appl. Phys. Lett. 102 064103
[34] Sun Y, Yu Z, Wang Z, Liu X 2015 Constr. Build. Mater. 96 484
Google Scholar
-
图 1 金刚石-碳化硅超硬复合材料中金刚石颗粒不同含量(体积百分比) (a) 10%; (b) 30%; (c) 50%; (d) 70%; (e) 73%; (f) 76%; 红色区域表示金刚石颗粒, 蓝色区域表示碳化硅基体
Figure 1. Diamond particle content in diamond-SiC superhard composites (in volume percentage): (a) 10%; (b) 30%; (c) 50%; (d) 70%; (e) 73%; (f) 76%. The red areas represent diamond particles, and the blue areas are the SiC matrix
图 4 在1300 m/s活塞驱动下, 金刚石-碳化硅超硬复合材料中金刚石颗粒不同含量的损伤演化特征, 其中金刚石颗粒含量(体积百分比)分别是(a) 10%; (b) 30%; (c) 50%; (d) 70%; (e) 73%; (f) 76%; 黑色带状区域是扩展滑移带
Figure 4. Damage evolution of diamond-SiC superhard composite with different diamond particle content in volume percentage: (a) 10%; (b) 30%; (c) 50%; (d) 70%; (e) 73%; (f) 76%. The piston velocity is 1300 m/s. The thin black lines are slip bands occurred in SiC matrix.
-
[1] Liu Y S, Hu C H, Men J, Feng W, Cheng L F, Zhang L T 2015 J. Eur. Ceram. Soc. 35 2233
Google Scholar
[2] Zhao Z F, Liu Y S, Feng W, Zhang Q, Cheng L F, Zhang L T 2017 Diam. Relat. Mater. 74 1
Google Scholar
[3] Ekimov E A, Gavriliuk A G, Palosz B, Gierlotka S, Dluzewski P, Tatianin E, Kluev Y, Naletov M, Presz A 2000 Appl. Phys. Lett. 77 954
Google Scholar
[4] Yang Z L, He X B, Wu M, Zhang L, Ma A, Liu R J, Hu H F, Zhang Y D, Qu X H 2013 Ceram. Int. 39 3399
Google Scholar
[5] Zhao Y S, Qian J, Daemen L L, Pantea C, Zhang J Z, Voronin G A, Zerda T W 2004 Appl. Phys. Lett. 84 1356
Google Scholar
[6] Lu K 2016 Nature Rev. Mater. 1 16019
Google Scholar
[7] Huang Q, Yu D L, Xu B, Hu W T, Ma Y M, Wang Y B, Zhao Z S, Wen B, He J L, Liu Z Y, Tian Y J 2014 Nature 510 250
Google Scholar
[8] Cheng Z, Zhou H, Lu Q, Gao H, Lu L 2018 Science 362 1925
Google Scholar
[9] Yang M X, Yan D S, Yuan F P, Jiang P, Ma E, Wu X L 2018 PNAS 115 7224
Google Scholar
[10] Mayer G 2005 Science 310 1144
Google Scholar
[11] Weaver J C, Milliron G W, Miserez A, Evans-Lutterodt K, Herrera S, Gallana I, Mershon W J, Swanson B, Zavattieri P, DiMasi E, Kisailus D 2012 Science 336 1275
Google Scholar
[12] Lian Y P, Zhang X, Liu Y 2012 Theor. Appl. Mech. Lett. 2 021003
Google Scholar
[13] Gusev A A 2004 Phys. Rev. Lett. 93 034302
Google Scholar
[14] Yu Y, Wang W Q, He H L, Lu T C 2014 Phys. Rev. E 89 043309
Google Scholar
[15] Yu Y, Wang W Q, He H L, Jiang T L, Huan Q, Zhang F P, Li Y Q, Lu T C 2015 J. Appl. Phys. 117 125901
Google Scholar
[16] Núñez Valdez M, Umemoto K, Wentzcovitch R M 2012 Appl. Phys. Lett. 101 171902
Google Scholar
[17] Varshney D, Shriya S, Varshney M, Singh N, Khenata R 2015 J. Theor. Appl. Phys. 9 221
Google Scholar
[18] Griffith A A, Eng M V I 1921 Phil. Trans. R. Soc. Lond. A 221 163
Google Scholar
[19] Qu R T, Zhang Z F 2013 Sci. Rep. 3 1117
Google Scholar
[20] Barenblatt G I 1962 Adv. Appl. Mech. 7 55
Google Scholar
[21] Novikov N V, Dub S N 1991 J. Hard. Mater. 2 3
[22] 罗恩 B 著 (龚江宏 译) 2010 脆性固体断裂力学 (北京: 高等教育出版社) 第44, 45页
Lawn B (translated by Gong J H) 2010 Fracture of Brittle Solid (Beijing: Higher Education Press) pp44, 45 (in Chinese)
[23] Liu Y S, Hu C H, Feng W, Men J, Cheng L F, Zhang L T 2014 J. Eur. Ceram. Soc. 34 3489
Google Scholar
[24] Matthey B, Höhn S, Wolfrum A K, Mühle U, Motylenko M, Rafaja D, Michaelis A, Herrmann M 2017 J. Eur. Ceram. Soc. 37 1917
Google Scholar
[25] 姜太龙, 喻寅, 宦强, 李永强, 贺红亮 2015 64 188301
Google Scholar
Jiang T L, Yu Y, Huan Q, Li Y Q, He H L 2015 Acta Phys. Sin. 64 188301
Google Scholar
[26] Grady D E 1998 Mech. Mater. 29 181
Google Scholar
[27] Eremin M O 2016 Phys. Mesomech. 19 452
Google Scholar
[28] Lapin J, Štamborská M, Pelachová T, Bajana O 2018 Mater. Sci. Eng. A 721 1
Google Scholar
[29] Salamone S, Aghajanian M, Horner S E, Zheng J Q 2015 Adv. Ceram. Armor. XI 600 111
[30] Lasalvia J C, Campbell J, Swab J J, Mccauley J W 2010 JOM 62 16
[31] Petel O E, Ouellet S 2017 J. Appl. Phys. 122 025108
[32] Petel O E, Ouellet S, Loiseau J, Frost D L, Higgins A J 2015 Int. J. Impact Eng. 85 83
Google Scholar
[33] Petel O E, Ouellet S, Loiseau J, Marr B J, Frost D L, Higgins A J 2013 Appl. Phys. Lett. 102 064103
[34] Sun Y, Yu Z, Wang Z, Liu X 2015 Constr. Build. Mater. 96 484
Google Scholar
Catalog
Metrics
- Abstract views: 10709
- PDF Downloads: 123
- Cited By: 0