Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

In situ observation of lithiation mechanism of SnO2 nanoparticles

Xiong Yu-Wei Yin Kui-Bo Wen Yi-Feng Xin Lei Yao Li-Bing Zhu Chong-Yang Sun Li-Tao

Citation:

In situ observation of lithiation mechanism of SnO2 nanoparticles

Xiong Yu-Wei, Yin Kui-Bo, Wen Yi-Feng, Xin Lei, Yao Li-Bing, Zhu Chong-Yang, Sun Li-Tao
PDF
HTML
Get Citation
  • Tin oxide (SnO2) has attracted a lot of attention among lithium ion battery anode materials due to its rich reserves, high theoretical capacity, and safe potential. However, the mechanism of the SnO2 nano materials in the lithiation-delithiation reaction, especially whether the first-step conversion reaction is reversible, is still controversial. In this paper, SnO2 nanoparticles with an average particle size of 4.4 nm are successfully prepared via a simple hydrothermal method. A nanosized lithium ion battery that enables the in situ electrochemical experiments of SnO2 nanoparticles is constructed to investigate the electrochemical behavior of SnO2 in lithiation-delithiation process. Briefly, the nanosized electrochemical cell consists of a SnO2 working electrode, a metal lithium (Li) counter electrode on a sharp tungsten probe, and a solid electrolyte of lithium oxide (Li2O) layer naturally grown on the surface of metal Li. Then, the whole lithiation-delithiation process of SnO2 nanocrystals is tracked in real time. When a constant potential of –2 V is applied to the SnO2 with respect to lithium, lithium ions begin to diffuse from one side of the nanoparticles, which is in contact with the Li/Li2O layer, and gradually propagate to the other side. Upon the lithiation, a two-step conversion reaction mechanism is revealed: SnO2 is first converted into intermediate phase of Sn with an average diameter of 4.2 nm which is then further converted into Li22Sn5. Upon the delithiation, a potential of 2 V is applied and Li22Sn5 phase can be reconverted into SnO2 phase when completely delithiated. It is because the interfaces and grain boundaries of nano-sized SnO2 may impede the Sn diffusing from one grain into another during lithiation/delithiation and then suppress the coarsening of Sn, and enable the Li2O and Sn to be sufficiently contacted with each other and then converted into SnO2. This work provides a valuable insight into an understanding of phase evolution in the lithiation-delithiation process of SnO2 and the results are of great significance for improving the reversible capacity and cycle performance of lithium ion batteries with SnO2 electrodes.
      Corresponding author: Yin Kui-Bo, yinkuibo@seu.edu.cn ; Sun Li-Tao, slt@seu.edu.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2017YFA0204800) and the National Natural Science Foundation of China (Grant Nos. 11674052, 11525415, 51420105003).
    [1]

    Paek S M, Yoo E, Honma I 2009 Nano Lett. 9 72Google Scholar

    [2]

    Kojima T, Ishizu T, Horiba T, Yoshikawa M 2009 J. Power Sources 189 859Google Scholar

    [3]

    Nitta N, Yushin G 2014 Part. Part. Syst. Charact. 31 317Google Scholar

    [4]

    Armand M, Tarascon J M 2008 Nature 451 652Google Scholar

    [5]

    Shao-Horn Y, Croguennec L, Delmas C, Nelson E C, O'Keefe M A 2003 Nat. Mater. 2 464Google Scholar

    [6]

    季怡汝, 张庆华, 谷林 2018 电子显微学报 37 532Google Scholar

    Ji Y R, Zhang Q H, Gu L 2018 J. Chin. Electron Microsc. Soc. 37 532Google Scholar

    [7]

    侯贤华, 余洪文, 胡社军 2010 59 8226Google Scholar

    Hou X H, Yu H W, Hu S J 2010 Acta Phys. Sin. 59 8226Google Scholar

    [8]

    侯贤华, 胡社军, 石璐 2009 59 2109Google Scholar

    Hou X H, Hu S J, Shi L 2009 Acta Phys. Sin. 59 2109Google Scholar

    [9]

    Wu F, Li X, Wang Z, Guo H J, He Z J, Zhang Q, Xiong X H, Yue P 2012 J. Power Sources 202 374Google Scholar

    [10]

    Wu F, Li X, Wang Z, Guo H J 2013 Nanoscale 5 6936Google Scholar

    [11]

    Sun L, Gao Y M, Xiao B, Li Y F, Wang G L 2013 J. Alloy. Compd. 579 457Google Scholar

    [12]

    Tian Q H, Tian Y, Zhang Z X, Yang L, Hirano S I 2014 J. Power Sources 269 479Google Scholar

    [13]

    Guo X W, Fang X P, Sun Y, Shen L Y, Wang Z X, Chen L Q 2013 J. Power Sources 226 75Google Scholar

    [14]

    Chen L, Wu P, Wang H, Ye Y, Xu B, Cao G P, Zhou Y M, Lu T H, Yang Y S 2014 J. Power Sources 247 178Google Scholar

    [15]

    Han Q Y, Zai J T, Xiao Y L, Li B, Xu M, Qian X F 2013 RSC Adv. 3 20573Google Scholar

    [16]

    Chen J S, Lou X W 2013 Small 9 1877Google Scholar

    [17]

    Ye H J, Li H Q, Jiang F Q, Yin J, Zhu H 2018 Electrochim. Acta 266 170Google Scholar

    [18]

    刘美梅, 钱翔英 2018 电子显微学报 37 15Google Scholar

    Xiu M M, Qian X Y 2018 J. Chin. Electron Microsc. Soc. 37 15Google Scholar

    [19]

    Youn S G, Lee I H, Yoon C S, Kim C K, Sun Y K, Lee Y S, Yoshio M 2002 J. Power Sources 108 97Google Scholar

    [20]

    Kraytsberg A, Ein-Eli Y 2011 J. Power Sources 196 886Google Scholar

    [21]

    Thackeray M M, Johnson C S, Kahaian A J, Kepler K D, Vaughey J T, Shao-Horn Y, Hackney S A 1999 J. Power Sources 81-82 60Google Scholar

    [22]

    Idota Y, Kubota T, Matsufuji A, Maekawa Y, Miyasaka T 1997 Science 276 1395Google Scholar

    [23]

    Hu R Z, Sun W, Liu H, Zeng M Q, Zhu M 2013 Nanoscale 5 11971Google Scholar

    [24]

    Brousse T, Retoux R, Herterich U, Schleich D M 1998 J. Electrochem. Soc. 145 1Google Scholar

    [25]

    Retoux R, Brousse T, Schleich D M 1999 J. Electrochem. Soc. 146 2472Google Scholar

    [26]

    Lou X W, Li C M, Archer L A 2009 Adv. Mat. 21 2536Google Scholar

    [27]

    Holmberg V C, Panthani M G, Korgel B A 2009 Science 326 405Google Scholar

    [28]

    Zheng H M, Smith R K, Jun Y W, Kisielowski C, Dahmen U, Alivisatos A P 2009 Science 324 1309Google Scholar

    [29]

    Huang J Y, Zhong L, Wang C M, Sullivan J P, Xu W, Zhang L Q, Mao Scott X, Hudak N S, Liu X H, Subramanian A, Fan H Y, Qi L, Kushima A, Li J 2010 Science 330 1515Google Scholar

    [30]

    Hu R Z, Zhang H P, Lu Z C, Liu J, Zeng M Q, Yang L C, Yuan B, Zhu M 2018 Nano Energy 45 255Google Scholar

    [31]

    Hu R Z, Chen D C, Waller G, Ouyang Y P, Chen Y, Zhao B, Rainwater B, Yang C H, Zhu M, Liu M L 2016 Energy Environ. Sci. 9 595Google Scholar

    [32]

    Li B S, Feng J K, Qian Y T, Xiong S L 2015 J. Mater. Chem. A 3 10336Google Scholar

    [33]

    Wang C M, Xu W, Liu J, Zhang J G, Saraf L V, Arey B W, Choi D, Yang Z G, Xiao J, Thevuthasan S, Baer D R 2011 Nano Lett. 11 1874Google Scholar

    [34]

    Meduri P, Clark E, Dayalan E, Sumanasekera G U, Sunkara M K 2011 Energy Environ. Sci. 4 1695Google Scholar

    [35]

    Meduri P, Pendyala C, Kumar V, Sumanasekera G U, Sunkara M K 2009 Nano Lett. 9 612Google Scholar

    [36]

    Haines J, Leger J M 1997 Phys. Rev. B 55 11144Google Scholar

    [37]

    Liu L G 1978 Science 199 422Google Scholar

    [38]

    Chen Z W, Lai J K L, Shek C H 2006 Appl. Phys. Lett. 89 231902Google Scholar

    [39]

    Carvalho M H, Pereira E C, de Oliveira A J A 2018 RSC Adv. 8 3958Google Scholar

  • 图 1  基于透射电镜的锂离子电池原型器件原位测试示意图

    Figure 1.  Schematic diagram of a prototype device for a lithium ion battery in the transmission electron microscope.

    图 2  SnO2纳米颗粒的表征 (a) SnO2纳米颗粒的XRD图谱; (b) 低倍率下的SnO2纳米颗粒的TEM像, 比例尺为50 nm; (c) SnO2纳米颗粒的高分辨像, 比例尺为2 nm; (d) SnO2纳米颗粒的SAED图像; (e) 四方相SnO2纳米颗粒的晶体结构; (f) SnO2纳米颗粒粒径尺寸分布

    Figure 2.  Characterization of SnO2 nanoparticles: (a) XRD pattern of the as-prepared SnO2 nanoparticles; (b) TEM image of SnO2 nanopaticles; (c) HRTEM of SnO2 nanoparticles; (d) SAED of SnO2 nanoparticles; (e) crystal structure of the tetracoral SnO2; (f) distribution of SnO2 nanoparticles size.

    图 3  SnO2纳米颗粒第一次嵌锂前后的变化 (a) SnO2嵌锂前的形貌, 比例尺为15 nm; (b) SnO2第一次嵌锂后的形貌, 比例尺为15 nm; (c) SnO2嵌锂一段时间后的HRTEM像, 比例尺为1 nm; (d) SnO2嵌锂一段时间后的SAED图; (e) SnO2第一次嵌锂结束后的HRTEM图, 比例尺为5 nm; (f) SnO2第一次嵌锂结束后的SAED图; (g)−(k) SnO2纳米颗粒第一次锂化过程, 比例尺为10 nm

    Figure 3.  Changes of SnO2 nanoparticles during the first lithiation: (a) Morphology of SnO2 before lithiation; (b) morphology of SnO2 after first lithiation; (c) HRTEM image of SnO2 after a moment; (d) SAED pattern of SnO2 after a moment; (e) HRTEM image of SnO2 after first completely lithiated; (f) SAED pattern of SnO2 after first completely lithiated; (g)−(k) SnO2 nanoparticle first lithiation process.

    图 4  SnO2纳米颗粒脱锂前后的变化 (a) SnO2第一次脱锂前的形貌, 比例尺为40 nm; (b) SnO2第一次脱锂后的形貌, 比例尺为40 nm; (c) SnO2第一次脱锂结束后的HRTEM图, 比例尺为1 nm; (d) SnO2第一次脱锂结束后的SAED图; (e)—(l) SnO2纳米颗粒第一次脱锂过程, 比例尺为40 nm; (m) SnO2纳米颗粒第二次嵌锂后的HRTEM图, 比例尺为1 nm; (n) SnO2纳米颗粒第二次嵌锂后的SAED图; (o) SnO2纳米颗粒第二次脱锂后的HRTEM图, 比例尺为1 nm; (p) SnO2纳米颗粒第二次脱锂后的SAED图

    Figure 4.  Changes of SnO2 nanoparticles during the delithiation: (a) Morphology of SnO2 before delithiation; (b) morphology of SnO2 after first delithiated; (c) HRTEM image of SnO2 after completely first delithiated; (d) SAED pattern of SnO2 after first completely delithiated; (e)–(l) SnO2 nanoparticle first delithiation process; (m) HRTEM image of SnO2 after second lithiated; (n) SAED pattern of SnO2 after second lithiated; (o) HRTEM image of SnO2 after second delithiated; (p) SAED pattern of SnO2 after second delithiated.

    Baidu
  • [1]

    Paek S M, Yoo E, Honma I 2009 Nano Lett. 9 72Google Scholar

    [2]

    Kojima T, Ishizu T, Horiba T, Yoshikawa M 2009 J. Power Sources 189 859Google Scholar

    [3]

    Nitta N, Yushin G 2014 Part. Part. Syst. Charact. 31 317Google Scholar

    [4]

    Armand M, Tarascon J M 2008 Nature 451 652Google Scholar

    [5]

    Shao-Horn Y, Croguennec L, Delmas C, Nelson E C, O'Keefe M A 2003 Nat. Mater. 2 464Google Scholar

    [6]

    季怡汝, 张庆华, 谷林 2018 电子显微学报 37 532Google Scholar

    Ji Y R, Zhang Q H, Gu L 2018 J. Chin. Electron Microsc. Soc. 37 532Google Scholar

    [7]

    侯贤华, 余洪文, 胡社军 2010 59 8226Google Scholar

    Hou X H, Yu H W, Hu S J 2010 Acta Phys. Sin. 59 8226Google Scholar

    [8]

    侯贤华, 胡社军, 石璐 2009 59 2109Google Scholar

    Hou X H, Hu S J, Shi L 2009 Acta Phys. Sin. 59 2109Google Scholar

    [9]

    Wu F, Li X, Wang Z, Guo H J, He Z J, Zhang Q, Xiong X H, Yue P 2012 J. Power Sources 202 374Google Scholar

    [10]

    Wu F, Li X, Wang Z, Guo H J 2013 Nanoscale 5 6936Google Scholar

    [11]

    Sun L, Gao Y M, Xiao B, Li Y F, Wang G L 2013 J. Alloy. Compd. 579 457Google Scholar

    [12]

    Tian Q H, Tian Y, Zhang Z X, Yang L, Hirano S I 2014 J. Power Sources 269 479Google Scholar

    [13]

    Guo X W, Fang X P, Sun Y, Shen L Y, Wang Z X, Chen L Q 2013 J. Power Sources 226 75Google Scholar

    [14]

    Chen L, Wu P, Wang H, Ye Y, Xu B, Cao G P, Zhou Y M, Lu T H, Yang Y S 2014 J. Power Sources 247 178Google Scholar

    [15]

    Han Q Y, Zai J T, Xiao Y L, Li B, Xu M, Qian X F 2013 RSC Adv. 3 20573Google Scholar

    [16]

    Chen J S, Lou X W 2013 Small 9 1877Google Scholar

    [17]

    Ye H J, Li H Q, Jiang F Q, Yin J, Zhu H 2018 Electrochim. Acta 266 170Google Scholar

    [18]

    刘美梅, 钱翔英 2018 电子显微学报 37 15Google Scholar

    Xiu M M, Qian X Y 2018 J. Chin. Electron Microsc. Soc. 37 15Google Scholar

    [19]

    Youn S G, Lee I H, Yoon C S, Kim C K, Sun Y K, Lee Y S, Yoshio M 2002 J. Power Sources 108 97Google Scholar

    [20]

    Kraytsberg A, Ein-Eli Y 2011 J. Power Sources 196 886Google Scholar

    [21]

    Thackeray M M, Johnson C S, Kahaian A J, Kepler K D, Vaughey J T, Shao-Horn Y, Hackney S A 1999 J. Power Sources 81-82 60Google Scholar

    [22]

    Idota Y, Kubota T, Matsufuji A, Maekawa Y, Miyasaka T 1997 Science 276 1395Google Scholar

    [23]

    Hu R Z, Sun W, Liu H, Zeng M Q, Zhu M 2013 Nanoscale 5 11971Google Scholar

    [24]

    Brousse T, Retoux R, Herterich U, Schleich D M 1998 J. Electrochem. Soc. 145 1Google Scholar

    [25]

    Retoux R, Brousse T, Schleich D M 1999 J. Electrochem. Soc. 146 2472Google Scholar

    [26]

    Lou X W, Li C M, Archer L A 2009 Adv. Mat. 21 2536Google Scholar

    [27]

    Holmberg V C, Panthani M G, Korgel B A 2009 Science 326 405Google Scholar

    [28]

    Zheng H M, Smith R K, Jun Y W, Kisielowski C, Dahmen U, Alivisatos A P 2009 Science 324 1309Google Scholar

    [29]

    Huang J Y, Zhong L, Wang C M, Sullivan J P, Xu W, Zhang L Q, Mao Scott X, Hudak N S, Liu X H, Subramanian A, Fan H Y, Qi L, Kushima A, Li J 2010 Science 330 1515Google Scholar

    [30]

    Hu R Z, Zhang H P, Lu Z C, Liu J, Zeng M Q, Yang L C, Yuan B, Zhu M 2018 Nano Energy 45 255Google Scholar

    [31]

    Hu R Z, Chen D C, Waller G, Ouyang Y P, Chen Y, Zhao B, Rainwater B, Yang C H, Zhu M, Liu M L 2016 Energy Environ. Sci. 9 595Google Scholar

    [32]

    Li B S, Feng J K, Qian Y T, Xiong S L 2015 J. Mater. Chem. A 3 10336Google Scholar

    [33]

    Wang C M, Xu W, Liu J, Zhang J G, Saraf L V, Arey B W, Choi D, Yang Z G, Xiao J, Thevuthasan S, Baer D R 2011 Nano Lett. 11 1874Google Scholar

    [34]

    Meduri P, Clark E, Dayalan E, Sumanasekera G U, Sunkara M K 2011 Energy Environ. Sci. 4 1695Google Scholar

    [35]

    Meduri P, Pendyala C, Kumar V, Sumanasekera G U, Sunkara M K 2009 Nano Lett. 9 612Google Scholar

    [36]

    Haines J, Leger J M 1997 Phys. Rev. B 55 11144Google Scholar

    [37]

    Liu L G 1978 Science 199 422Google Scholar

    [38]

    Chen Z W, Lai J K L, Shek C H 2006 Appl. Phys. Lett. 89 231902Google Scholar

    [39]

    Carvalho M H, Pereira E C, de Oliveira A J A 2018 RSC Adv. 8 3958Google Scholar

  • [1] Liu Xuan-Xuan, Guo Hong-Xuan, Xu Tao, Yin Kui-Bo, Sun Li-Tao. In-situ liquid phase transmission electron microscope and its application in nanoparticle characterization. Acta Physica Sinica, 2021, 70(8): 086701. doi: 10.7498/aps.70.20201899
    [2] Gong Shao-Kang, Zhou Jing, Wang Zhi-Qing, Zhu Mao-Cong, Shen Jie, Wu Zhi, Chen Wen. Size-controlled resistive switching performance and regulation mechanism of SnO2 QDs. Acta Physica Sinica, 2021, 70(19): 197301. doi: 10.7498/aps.70.20210608
    [3] Cao Wen-Zhuo, Li Quan, Wang Sheng-Bin, Li Wen-Jun, Li Hong. Mechanism, strategies, and characterizations of Li plating in solid state batteries. Acta Physica Sinica, 2020, 69(22): 228204. doi: 10.7498/aps.69.20201293
    [4] Chen Ya-Qi,  Xu Hua-Kai,  Tang Dong-Sheng,  Yu Fang,  Lei Le,  Ouyang Gang. Electrical transport properties and related mechanism of single SnO2 nanowire device. Acta Physica Sinica, 2018, 67(24): 246801. doi: 10.7498/aps.67.20181402
    [5] Feng Qiu-Ju, Pan De-Zhu, Xing Yan, Shi Xiao-Chi, Yang Yu-Qi, Li Fang, Li Tong-Tong, Guo Hui-Ying, Liang Hong-Wei. Growth, structural and optical properties of orderly SnO2 microhemispheres on patterned sapphire substrates. Acta Physica Sinica, 2017, 66(3): 038101. doi: 10.7498/aps.66.038101
    [6] Lei Jie-Mei, Lü Liu, Liu Ling, Xu Xiao-Liang. Preparation and characterization of magnetic nanoparticles of Fe3O4 coated with mesoporous SiO2. Acta Physica Sinica, 2011, 60(1): 017501. doi: 10.7498/aps.60.017501
    [7] Zhang Kun, Liu Fang-Yang, Lai Yan-Qing, Li Yi, Yan Chang, Zhang Zhi-An, Li Jie, Liu Ye-Xiang. In situ growth and characterization of Cu2ZnSnS4 thin films by reactive magnetron co-sputtering for solar cells. Acta Physica Sinica, 2011, 60(2): 028802. doi: 10.7498/aps.60.028802
    [8] Zeng Guang-Gen, Li Bing, Zheng Jia-Gui, Wu Li-Li, Zhang Jing-Quan, Lei Zhi, Li Wei, Feng Liang-Huan. Performance of SnO2:F/SnO2 composite film as front-electrode for CdTe solar cells. Acta Physica Sinica, 2010, 59(10): 7437-7441. doi: 10.7498/aps.59.7437
    [9] Lin Tao, Wan Neng, Han Min, Xu Jun, Chen Kun-Ji. Synthesis,structures and luminescence properties of SnO2 nanoparticles. Acta Physica Sinica, 2009, 58(8): 5821-5825. doi: 10.7498/aps.58.5821
    [10] Jia Xi, Liu Ai-Ping, Liu Yang-Yi, Tang Wei-Hua, Wang Jun-Wei. Synthesis and growth mechanism study of SnO2 micro/nanomaterials. Acta Physica Sinica, 2009, 58(4): 2572-2577. doi: 10.7498/aps.58.2572
    [11] Simulative calculation of electronic structure of F-doped SnO2. Acta Physica Sinica, 2007, 56(12): 7195-7200. doi: 10.7498/aps.56.7195
    [12] Zeng Chun-Lai, Tang Dong-Sheng, Liu Xing-Hui, Hai Kuo, Yang Yi, Yuan Hua-Jun, Xie Si-Shen. Controllable preparation of SnO2 one-dimensional nanostructures by chemical vapor deposition. Acta Physica Sinica, 2007, 56(11): 6531-6536. doi: 10.7498/aps.56.6531
    [13] Luo Yu-Feng, Zhong Cheng, Zhang Li, Yan Xue-Jian, Li Jin, Jiang Yi-Ming. An in situ method for characterizing the kinetics of the oxidation process of copper thin films via sheet resistance. Acta Physica Sinica, 2007, 56(11): 6722-6726. doi: 10.7498/aps.56.6722
    [14] Ding Shuo, Liu Yu-Long, G. G. Siu. Raman study of SnO2 nanograins under different annealing temperature. Acta Physica Sinica, 2005, 54(9): 4416-4421. doi: 10.7498/aps.54.4416
    [15] Ji Zhen-Guo, He Zhen-Jie, Song Yong-Liang. Preparation and characterization of In-doped p-type SnO2 thin films by solgel dipcoating*. Acta Physica Sinica, 2004, 53(12): 4330-4333. doi: 10.7498/aps.53.4330
    [16] KANG JUN-YONG, S.TSUNEKAWA, A.KASUYA. SIZE EFFECT ON ABSORPTION EDGES OFULTRA-FINE SnO2 NANOPARTICLES. Acta Physica Sinica, 2001, 50(11): 2198-2202. doi: 10.7498/aps.50.2198
    [17] LOU JIAN-XIN, LIU YI-HUA, HUANG BAO-XIN, ZHANG LIN, ZHANG RU-ZHEN, ZHANG WEI-JIAN, ZHANG LIAN-SHEN. MAGNETIC PROPERTIES OF Fe/SnO2 AMORPHOUS MULTILAYERS. Acta Physica Sinica, 1998, 47(3): 508-513. doi: 10.7498/aps.47.508
    [18] YU BAD-LONG, ZHANG GUI-LAN, TANG GUO-QING, WU XIAO-CHUN, CHEN WEN-JU. STUDY OF THE SURFACE PHONON MODES INSnO2 NANOMETER PARTICLES BY THE METHOD OF INFRARED SPECTROSCOPY. Acta Physica Sinica, 1996, 45(6): 1003-1009. doi: 10.7498/aps.45.1003
    [19] Yu Bao-Ling, Wu Chun-Xiao, Chen Wen-Ju, Zhou Bing-Suo, Zhang Gui-Lan, Tang Guo-Qing. . Acta Physica Sinica, 1995, 44(4): 660-665. doi: 10.7498/aps.44.660
    [20] Zhang Dao-yuan, Wang Da-zhi, Wang Gen-miao, Wang Zheng, Wu Yong-hua. MSSBAUER STUDY OF NANOCRYSTALLINE SnO2 MATERIALS. Acta Physica Sinica, 1991, 40(5): 844-848. doi: 10.7498/aps.40.844
Metrics
  • Abstract views:  10510
  • PDF Downloads:  146
  • Cited By: 0
Publishing process
  • Received Date:  27 March 2019
  • Accepted Date:  23 May 2019
  • Available Online:  01 August 2019
  • Published Online:  05 August 2019

/

返回文章
返回
Baidu
map