Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

First-principle study of effect of asymmetric biaxial tensile strain on band structure of Germanium

Dai Zhong-Hua Qian Yi-Chen Xie Yao-Ping Hu Li-Juan Li Xiao-Di Ma Hai-Tao

Citation:

First-principle study of effect of asymmetric biaxial tensile strain on band structure of Germanium

Dai Zhong-Hua, Qian Yi-Chen, Xie Yao-Ping, Hu Li-Juan, Li Xiao-Di, Ma Hai-Tao
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The strain engineering is an effective method to modulate the optical properties of germanium. The biaxial tensile strain has been extensively studied, most of the investigations focusing on biaxial tensile strain with equal in-plane strain at different crystal orientations, namely symmetric biaxial tensile strain. However, the effect of biaxial tensile strain with unequal in-plane strain at different crystal orientations, namely asymmetric biaxial tensile strain, has not been reported. In this paper, we systematically investigate the effect of asymmetric biaxial tensile strain on the band structure of Ge by using first-principle calculation.#br#We firstly calculate and analyze the dependence of band gap on strain for Ge with asymmetric biaxial tensile strain along three low Miller index planes, i.e., (001), (101) and (111). Then, we present the values of band gap and strain for some typical indirect-to-direct bandgap-transition-points under asymmetric biaxial tensile strain. Finally, we analyze the influence of biaxial tensile strain on the valance band structure. For the asymmetric biaxial tensile strain along the (001) plane, the indirect-to-direct band gap transition only occurs when the strain of one orientation is larger than 2.95%. For asymmetric biaxial tensile strain along the (101) plane, the indirect-to-direct band gap transition only occurs when the strain of one orientation is larger than 3.44%. Asymmetric biaxial tensile strain along the (111) plane cannot transform Ge into direct band gap material.#br#For asymmetric biaxial tensile strains along the (001) and (101) plane, the indirect-to-direct band gap transition points can be adjusted by changing the combination of in-plane strain at different crystal orientations. The value of bandgap of direct-band-gap Ge under biaxial tensile strain is inversely proportional to the area variation induced by application of strain. The asymmetric biaxial tensile strain along the (001) plane is the most effective to transform Ge into direct band gap material among the three types of biaxial strains, which are similar to the symmetric biaxial tensile strains.#br#In addition, the symmetric biaxial tensile strain will remove the three-fold degenerate states of valance band maximum, leading to a removal of the degeneracy between one heavy hole band and the light hole band. For biaxial tensile strain along the (001) and (101) plane, the asymmetric biaxial tensile strain could further remove the degeneracy between another heavy hole band and the light hole band.
      Corresponding author: Xie Yao-Ping, ypxie@shu.edu.cn
    • Funds: Project supported by Science and Technology Commission of Shanghai Municipality, China (Grant No. 15ZR1416000), China Academy of Engineering Physics Joint Funds of National Natural Science Foundation (Grant No. U1530115) and the National Science Foundation of China (Grant No. 51301102)
    [1]

    Soref R 2006 IEEE J. Sel. Top. Quant. Electron. 12 1678

    [2]

    Michel J, Liu J, Kimerling L C 2010 Nature Photon. 4 527

    [3]

    Kasper E 2010 Front. Optoelectron. China 3 143

    [4]

    Reed G T, Mashanovich G, Gardes F Y, Thomson D J 2010 Nature Photon. 4 518

    [5]

    Sun X, Liu J, Kimerling L C, Michel J 2009 Opt. Lett. 34 1198

    [6]

    Liu J, Sun X, Kimerling L C, Michel J 2009 Opt. Lett. 34 1738

    [7]

    Jain J R, Hryciw A, Baer T M, Miller D A B, Brongersma M L, Howe R T 2012 Nature Photon. 6 398

    [8]

    Huang W Q, Liu S R 2005 Acta Phys. Sin. 54 972 (in Chinese)[黄伟其, 刘世荣2005 54 972]

    [9]

    Ma S Y, Qin G G, You L P, Wang Y Y 2001 Acta Phys. Sin. 50 1580 (in Chinese)[马书懿, 秦国刚, 尤力平, 王印月2001 50 1580]

    [10]

    Boucaud P, Kurdi M E, Ghrib A, Prost M, Kersauson M, Sauvage S, Aniel F, Checoury X, Beaudoin G, Largeau L, Sagnes I, Ndong G, Chaigneau M, Ossikovski R 2013 Photon. Res. 1 102

    [11]

    Chen M J, Tsai C S, Wu M K 2006 Jpn. J. Appl. Phys. 45 6576

    [12]

    Sánchez-Péreza J R, Boztug C, Chen F, Sudradjat F F, Paskiewicz D M, Jacobson R B, Lagally M G, Paiella R 2011 Proc. Natl. Acad. Sci. USA 108 18893

    [13]

    Huo Y, Lin H, Chen R, Makarova M, Rong Y, Li M, Kamins T I, Vuckovic J, Harris J S 2011 Appl. Phys. Lett. 98 011111

    [14]

    Hoshina Y, Iwasaki K, Yamada A, Konagai M 2009 Jpn. J. Appl. Phys. 48 04C125

    [15]

    Tahini H, Chroneos A, Grimes R W, Schwingenschlogl U, Dimoulas A 2012 J. Phys.:Condens. Matter 24 195802

    [16]

    Yang C H, Yu Z Y, Liu Y M, Lu P F, Gao T, Li M, Manzoor S 2013 Phys. B:Condens. Matter 427 62

    [17]

    Liu L, Zhang M, Hu L, Di Z, Zhao S J 2014 J. Appl. Phys. 116 113105

    [18]

    Inaoka T, Furukawa T, Toma R, Yanagisawa S 2015 J. Appl. Phys. 118 105704

    [19]

    Dai X Y, Yang C, Song J J, Zhang H M, Hao Y, Zheng R C 2012 Acta Phys. Sin. 61 237102 (in Chinese)[戴显英, 杨程, 宋建军, 张鹤鸣, 郝跃, 郑若川2012 61 237102]

    [20]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [21]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [22]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [23]

    Blöchl P E 1994 Phys. Rev. B 50 17953

    [24]

    Tahini H, Chroneos A, Grimes R W, Schwingenschlögl U, Bracht H 2011 Appl. Phys. Lett. 99 072112

    [25]

    Tahini H, Chroneos A, Grimes R W, Schwingenschlögl U 2011 Appl. Phys. Lett. 99 162103

    [26]

    Hummer K, Harl J, Kresse G 2009 Phys. Rev. B 80 115205

    [27]

    Kittel C (translated by Xiang J Z, Wu X H) 2012 Introduction to Solid State Physics (8th Ed.) (Beijing:Chemical Industry Press) p133(in Chinese)[基泰尔C著(项金钟, 吴兴惠译) 2012固体物理导论第八版(北京:化学工业出版社)第133页]

  • [1]

    Soref R 2006 IEEE J. Sel. Top. Quant. Electron. 12 1678

    [2]

    Michel J, Liu J, Kimerling L C 2010 Nature Photon. 4 527

    [3]

    Kasper E 2010 Front. Optoelectron. China 3 143

    [4]

    Reed G T, Mashanovich G, Gardes F Y, Thomson D J 2010 Nature Photon. 4 518

    [5]

    Sun X, Liu J, Kimerling L C, Michel J 2009 Opt. Lett. 34 1198

    [6]

    Liu J, Sun X, Kimerling L C, Michel J 2009 Opt. Lett. 34 1738

    [7]

    Jain J R, Hryciw A, Baer T M, Miller D A B, Brongersma M L, Howe R T 2012 Nature Photon. 6 398

    [8]

    Huang W Q, Liu S R 2005 Acta Phys. Sin. 54 972 (in Chinese)[黄伟其, 刘世荣2005 54 972]

    [9]

    Ma S Y, Qin G G, You L P, Wang Y Y 2001 Acta Phys. Sin. 50 1580 (in Chinese)[马书懿, 秦国刚, 尤力平, 王印月2001 50 1580]

    [10]

    Boucaud P, Kurdi M E, Ghrib A, Prost M, Kersauson M, Sauvage S, Aniel F, Checoury X, Beaudoin G, Largeau L, Sagnes I, Ndong G, Chaigneau M, Ossikovski R 2013 Photon. Res. 1 102

    [11]

    Chen M J, Tsai C S, Wu M K 2006 Jpn. J. Appl. Phys. 45 6576

    [12]

    Sánchez-Péreza J R, Boztug C, Chen F, Sudradjat F F, Paskiewicz D M, Jacobson R B, Lagally M G, Paiella R 2011 Proc. Natl. Acad. Sci. USA 108 18893

    [13]

    Huo Y, Lin H, Chen R, Makarova M, Rong Y, Li M, Kamins T I, Vuckovic J, Harris J S 2011 Appl. Phys. Lett. 98 011111

    [14]

    Hoshina Y, Iwasaki K, Yamada A, Konagai M 2009 Jpn. J. Appl. Phys. 48 04C125

    [15]

    Tahini H, Chroneos A, Grimes R W, Schwingenschlogl U, Dimoulas A 2012 J. Phys.:Condens. Matter 24 195802

    [16]

    Yang C H, Yu Z Y, Liu Y M, Lu P F, Gao T, Li M, Manzoor S 2013 Phys. B:Condens. Matter 427 62

    [17]

    Liu L, Zhang M, Hu L, Di Z, Zhao S J 2014 J. Appl. Phys. 116 113105

    [18]

    Inaoka T, Furukawa T, Toma R, Yanagisawa S 2015 J. Appl. Phys. 118 105704

    [19]

    Dai X Y, Yang C, Song J J, Zhang H M, Hao Y, Zheng R C 2012 Acta Phys. Sin. 61 237102 (in Chinese)[戴显英, 杨程, 宋建军, 张鹤鸣, 郝跃, 郑若川2012 61 237102]

    [20]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [21]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [22]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [23]

    Blöchl P E 1994 Phys. Rev. B 50 17953

    [24]

    Tahini H, Chroneos A, Grimes R W, Schwingenschlögl U, Bracht H 2011 Appl. Phys. Lett. 99 072112

    [25]

    Tahini H, Chroneos A, Grimes R W, Schwingenschlögl U 2011 Appl. Phys. Lett. 99 162103

    [26]

    Hummer K, Harl J, Kresse G 2009 Phys. Rev. B 80 115205

    [27]

    Kittel C (translated by Xiang J Z, Wu X H) 2012 Introduction to Solid State Physics (8th Ed.) (Beijing:Chemical Industry Press) p133(in Chinese)[基泰尔C著(项金钟, 吴兴惠译) 2012固体物理导论第八版(北京:化学工业出版社)第133页]

  • [1] Wang Kun, Qiao Ying-Jie, Zhang Xiao-Hong, Wang Xiao-Dong, Zheng Ting, Bai Cheng-Ying, Zhang Yi-Ming, Du Shi-Yu. First-principles study of effect of ideal tensile/shear strain on chemical bond length and charge density distribution of U3Si2. Acta Physica Sinica, 2022, 71(22): 227102. doi: 10.7498/aps.71.20221210
    [2] Jiang Nan, Li Ao-Lin, Qu Shui-Xian, Gou Si, Ouyang Fang-Ping. First principles study of magnetic transition of strain induced monolayer NbSi2N4. Acta Physica Sinica, 2022, 71(20): 206303. doi: 10.7498/aps.71.20220939
    [3] Wang Na, Xu Hui-Fang, Yang Qiu-Yun, Zhang Mao-Lian, Lin Zi-Jing. First-principles study of strain-tunable charge carrier transport properties and optical properties of CrI3 monolayer. Acta Physica Sinica, 2022, 71(20): 207102. doi: 10.7498/aps.71.20221019
    [4] Xu Jia-Ling, Jia Li-Yun, Liu Chao, Wu Quan, Zhao Ling-Jun, Ma Li, Hou Deng-Lu. Band structure of topological insulator Li(Na)AuS. Acta Physica Sinica, 2021, 70(2): 027101. doi: 10.7498/aps.70.20200885
    [5] Hou Lu, Tong Xin, Ouyang Gang. First-principles study of atomic bond nature of one-dimensional carbyne chain under different strains. Acta Physica Sinica, 2020, 69(24): 246802. doi: 10.7498/aps.69.20201231
    [6] Yang Wen, Song Jian-Jun, Ren Yuan, Zhang He-Ming. Band structure model of modified Ge for optical device application. Acta Physica Sinica, 2018, 67(19): 198502. doi: 10.7498/aps.67.20181155
    [7] Di Lin-Jia, Dai Xian-Ying, Song Jian-Jun, Miao Dong-Ming, Zhao Tian-Long, Wu Shu-Jing, Hao Yue. Calculations of energy band structure and mobility in critical bandgap strained Ge1-xSnx based on Sn component and biaxial tensile stress modulation. Acta Physica Sinica, 2018, 67(2): 027101. doi: 10.7498/aps.67.20171969
    [8] Hu Jie-Qiong, Xie Ming, Chen Jia-Lin, Liu Man-Men, Chen Yong-Tai, Wang Song, Wang Sai-Bei, Li Ai-Kun. First principles study of electronic and elastic properties of Ti3AC2 (A = Si, Sn, Al, Ge) phases. Acta Physica Sinica, 2017, 66(5): 057102. doi: 10.7498/aps.66.057102
    [9] Cheng Xu-Dong, Wu Hai-Xin, Tang Xiao-Lu, Wang Zhen-You, Xiao Rui-Chun, Huang Chang-Bao, Ni You-Bao. First principles study on the electronic structures and optical properties of Na2Ge2Se5. Acta Physica Sinica, 2014, 63(18): 184208. doi: 10.7498/aps.63.184208
    [10] Huang You-Lin, Hou Yu-Hua, Zhao Yu-Jun, Liu Zhong-Wu, Zeng De-Chang, Ma Sheng-Can. Influences of strain on electronic structure and magnetic properties of CoFe2O4 from first-principles study. Acta Physica Sinica, 2013, 62(16): 167502. doi: 10.7498/aps.62.167502
    [11] Li Zhi-Min, Shi Jian-Zhang, Wei Xiao-Hei, Li Pei-Xian, Huang Yun-Xia, Li Gui-Fang, Hao Yue. First principles calculation of electronic structure for Al-doped 3C-SiC and its microwave dielectric properties. Acta Physica Sinica, 2012, 61(23): 237103. doi: 10.7498/aps.61.237103
    [12] Wu Mu-Sheng, Xu Bo, Liu Gang, Ouyang Chu-Ying. The effect of strain on band structure of single-layer MoS2: an ab initio study. Acta Physica Sinica, 2012, 61(22): 227102. doi: 10.7498/aps.61.227102
    [13] Dai Xian-Ying, Yang Cheng, Song Jian-Jun, Zhang He-Ming, Hao Yue, Zheng Ruo-Chuan. The model of valence-band dispersion for strained Ge/Si1-xGex. Acta Physica Sinica, 2012, 61(13): 137104. doi: 10.7498/aps.61.137104
    [14] Ma Jian-Li, Zhang He-Ming, Song Jian-Jun, Wang Guan-Yu, Wang Xiao-Yan. Energy band structure of uniaxial-strained silicon material on the (001) surface arbitrary orientation. Acta Physica Sinica, 2011, 60(2): 027101. doi: 10.7498/aps.60.027101
    [15] Sun Wei-Feng, Li Mei-Cheng, Zhao Lian-Cheng. Phonon band structure and electron-phonon interactions in Ga and Sb nanowires: a first-principles study. Acta Physica Sinica, 2010, 59(10): 7291-7297. doi: 10.7498/aps.59.7291
    [16] Lu Zhi-Peng, Zhu Wen-Jun, Lu Tie-Cheng, Liu Shao-Jun, Cui Xin-Lin, Chen Xiang-Rong. The mechanism of structure phase transition from α Fe to ε Fe under uniaxial strain: First-principles calculations. Acta Physica Sinica, 2010, 59(6): 4303-4312. doi: 10.7498/aps.59.4303
    [17] Huang Yun-Xia, Cao Quan-Xi, Li Zhi-Min, Li Gui-Fang, Wang Yu-Peng, Wei Yun-Ge. First-principles calculation of microwave dielectric properties of Al-doping ZnO powders. Acta Physica Sinica, 2009, 58(11): 8002-8007. doi: 10.7498/aps.58.8002
    [18] Kong Xiang-Lan, Hou Qin-Ying, Su Xi-Yu, Qi Yan-Hua, Zhi Xiao-Fen. First-principles study of the electronic structure and optical properties of Ba0.5Sr0.5TiO3. Acta Physica Sinica, 2009, 58(6): 4128-4131. doi: 10.7498/aps.58.4128
    [19] Song Jian-Jun, Zhang He-Ming, Hu Hui-Yong, Xuan Rong-Xi, Dai Xian-Ying. Band structure of strained Si1-xGex. Acta Physica Sinica, 2009, 58(11): 7947-7951. doi: 10.7498/aps.58.7947
    [20] Song Jian-Jun, Zhang He-Ming, Dai Xian-Ying, Hu Hui-Yong, Xuan Rong-Xi. Band structure of strained Si/(111)Si1-xGex: a first principles investigation. Acta Physica Sinica, 2008, 57(9): 5918-5922. doi: 10.7498/aps.57.5918
Metrics
  • Abstract views:  5942
  • PDF Downloads:  275
  • Cited By: 0
Publishing process
  • Received Date:  18 March 2017
  • Accepted Date:  05 June 2017
  • Published Online:  05 August 2017

/

返回文章
返回
Baidu
map