Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Photovoltaic effect in ferroelectrics

Cai Tian-Yi Ju Sheng

Citation:

Photovoltaic effect in ferroelectrics

Cai Tian-Yi, Ju Sheng
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Ferroelectric oxides are attractive materials for constructing efficient solar cells. The mechanism includes the anomalous photovoltaic effect (APE) and the bulk photovoltaic effect (BPE). The BPE refers to the generation of a steady photocurrent and above-bandgap photovoltage in a single-phase homogeneous material lacking inversion symmetry. The mechanism of BPE is different from the typical p-n junction-based photovoltaic mechanism in heterogeneous materials. We survey the history, development and recent progress in understanding the mechanisms of BPE, with a focus on the shift current mechanism, an intrinsic BPE that is universal to all materials lacking inversion symmetry. We also review the important factors to the APE, i.e., the domain boundary, the Schottcky junction, and the depolarization field. The recent successful applications of inorganic and hybrid perovskite structured materials in solar cells emphasize that ferroelectrics can be used in conventional photovoltaic architectures. We review the development in this field, with a particular emphasis on the perovskite materials and the theoretical explanations. In addition to discussing the implication of a ferroelectric absorber layer and the solid state theory of polarization, the design principles and prospect for high-efficiency ferroelectric photovoltaics are also mentioned. Considering the coupling between the degrees of freedom, some special ferroelectrics are expected to have prominent multi-functionality. With the introduction of the additional degree of freedom, some ferroelectrics, i.e., ScFexCr1-xO3 (1/6 x 5/6), can be a promising candidate for highly efficient solar cells and spin photovoltaic devices.
      Corresponding author: Cai Tian-Yi, caitianyi@suda.edu.cn;jusheng@suda.edu.cn ; Ju Sheng, caitianyi@suda.edu.cn;jusheng@suda.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11374220, 11204193), the National Basic Research Program of China (Grant No. 2014CB920900), the Qinlan Project of Jiangsu Province, and the Dongwu Scholar Project of Soochow University.
    [1]

    Green M A, Bremner S P 2017 Nat. Mater. 16 23

    [2]

    Chapin D M, Fuller C S, Pearson G L A 1954 J. Appl. Phys. 25 676

    [3]

    Shockley W, Queisser H J 1961 J. Appl. Phys. 32 510

    [4]

    Lopez N, Reichertz L A, Yu K M 2011 Phys. Rev. Lett. 106 028701

    [5]

    Jackson E D 1958 Trans Conf. Use Solar Energy 5 122

    [6]

    Green M A, Keevers M J, Thomas I, Lasich J B, Emery K 2015 Prog. Photovolt. 23 685

    [7]

    Fridkin V M 1979 Photoferroelectrics (Berlin: Springer-Verlag)

    [8]

    King-Smith R D, Vanderbilt D 1993 Phys. Rev. B 47 1651

    [9]

    Seidel J, Eng L M 2014 Curr. Appl. Phys. 14 1083

    [10]

    Bulter K T, Frost J M, Walsh A 2015 Energy Environ. Sci. 8 838

    [11]

    Hu Z, Tian M, Nysten B, Jonas A M 2009 Nat. Mater. 8 62

    [12]

    Scott J F 2007 Science 315 954

    [13]

    Garcia V, Bibes M 2012 Nature 483 279

    [14]

    Lee D, Yang S M, Kim T H, Jeon B C, Kim Y S, Yoon J G, Lee H N, Baek S H, Eom C B, Noh T W 2012 Adv. Mater. 24 402

    [15]

    Dong S, Liu J M, Cheong S W, Ren Z 2015 Adv. Phys. 64 519

    [16]

    Garcia V, Bibes M, Bocher L, Valencia S, Kronast F, Crassous A, Moya X, Enouz-Vedrenne S, Gloter A, Imhoff D, Deranlot C, Mathur N D, Fusil S, Bouzehouane K, Barthlmy A 2010 Science 327 1106

    [17]

    Ramesh R 2010 Nat. Mater. 9 380

    [18]

    Meyerheim H L, Klimenta F, Ernst A, Mohseni K, Ostanin S, Fechner M, Parihar S, Maznichenko I V, Mertig I, Kirschner J 2011 Phys. Rev. Lett. 106 087203

    [19]

    Cai T Y, Ju S, Sun H, Li Z Y 2008 Prog. Phys. 1 50 (in Chinese) [蔡田怡, 雎胜, 孙华, 李振亚 2008 物理学进展 1 50]

    [20]

    Weng Y K, Lin L F, Dagotto E, Dong S 2016 Phys. Rev. Lett. 117 037601

    [21]

    Cai T Y, Ju S, Lee J, Sai N, Demkov A A, Niu Q, Li Z Y, Shi J R, Wang E G 2009 Phys. Rev. B 80 140415

    [22]

    Cai T Y, Liu S C, Ju S, Liu C Y, Guo G Y 2017 Phys. Rev. Appl. 8 034034

    [23]

    Yuan Y, Xiao Z, Yang B, Huang J 2014 J. Mater. Chem. A 2 6027

    [24]

    Tan L Z, Zheng F, Young S M, Wang F, Liu S, Rappe A M 2016 npj Comput. Mater. 2 16026

    [25]

    Yang S Y, Seidel J, Byrnes S J, Shafer P, Yang C H, Rossell M D, Yu P, Chu Y H, Scott J F, Ager Ⅲ J W, Martin L W, Ramesh R 2010 Nat. Nanotechnol. 5 143

    [26]

    Young S M, Rappe A M 2012 Phys. Rev. Lett. 109 116601

    [27]

    Grinberg I, West D V, Torres M, Gou G, Stein D M, Wu L, Chen G, Gallo E M, Akbashev A R, Davies P K, Spanier J E, Rappe A M 2013 Nature 503 509

    [28]

    Alexe M, Hesse D 2011 Nat. Commun. 2 256

    [29]

    Bhatnagar A, Chaudhuri A R, Kim Y H, Hesse D, Alexe M 2013 Nat. Commun. 4 2835

    [30]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050

    [31]

    Lee M M, Teuscher J, Miyasaka T, Murakami T N, Snaith H J 2012 Science 338 643

    [32]

    Burschka J, Pellet N, Moon S J, Humphry-Baker R, Gao P, Nazeeruddin M K, Grtze M 2013 Nature 499 316

    [33]

    Heo J H, Im S H, Noh J H, Mandal T N, Lim C S, Chang J A, Lee Y H, Kim H J, Sarkar A, Nazeeruddin M K 2013 Nat. Photon. 7 486

    [34]

    Park N G 2013 J. Phys. Chem. Lett. 4 2423

    [35]

    Bass K K, McAnally R E, Zhou S, Djurovich P I, Thompson M E, Melot B C 2014 Chem. Commun. 50 15819

    [36]

    Bhachu D, Scanlon D, Saban E, Bronstein H, Parkin I, Carmalt C, Palgrave R 2015 J. Mater. Chem. A 3 9071

    [37]

    Zenkevich A, Matveyev Y, Maksimova K, Gaynutdinov R, Tolstikhina A, Fridkin V M 2014 Phys. Rev. B 90 161409

    [38]

    Sturman B S I, Fridkin V M 1992 Photovoltaic and Photorefractive Effects in Noncentrosymmetric Materials (Philadelphia: Gordon and Breach)

    [39]

    Fridkin V M, Popov B N 1978 Sov. Phys. Usp. 21 981V

    [40]

    Koch W T H, Munser R, Ruppel W, Wurfel P 1975 Solid State Commun. 17 847

    [41]

    Chynoweth A G 1956 Phys. Rev. 102 705

    [42]

    Belinicher V I, Sturman B I 1980 Phys.-Usp. 23 199

    [43]

    Lines M E, Glass A M 1977 Principles and Applications of Ferroelectrics and Related Materials (Oxford: Clarendon Press)

    [44]

    Fridkin V M 2012 Applications of Ferroelectrics Held Jointly with 2012 European Conference on the Applications of Polar Dielectrics and 2012 International Symp Piezoresponse Force Microscopy and Nanoscale Phenomena in Polar Materials (ISAF/ECAPD/PFM), Aveiro, Portugal, July 9-13, 2012, pp1, 2

    [45]

    Dresselhaus G 1955 Phys. Rev. 100 580

    [46]

    Even J, Pedesseau L, Jancu J M, Katan C 2013 J. Phys. Chem. Lett. 4 2999

    [47]

    Brivio F, Butler K T, Walsh A, van Schilfgaarde M 2014 Phys. Rev. B 89 155204

    [48]

    Auston D H, Glass A M, Ballman A A 1972 Phys. Rev. Lett. 28 897

    [49]

    Glass A M, von der Linde D, Negran T J 1974 Appl. Phys. Lett. 25 233

    [50]

    Somma C, Reimann K, Flytzanis C, Elsaesser T, Woerner M 2014 Phys. Rev. Lett. 112 146602

    [51]

    Ji W, Yao K, Liang Y C 2010 Adv. Mater. 22 1763

    [52]

    Bieler M, Pierz K, Siegner U, Dawson P 2007 Phys. Rev. B 76 161304

    [53]

    Ogden T R, Gookin D M 1984 Appl. Phys. Lett. 45 995

    [54]

    Nakamura M, Kagawa F, Tanigaki T, Park H S, Matsuda T, Shindo D, Tokura Y, Kawasaki M 2016 Phys. Rev. Lett. 116 156801

    [55]

    von Baltz R, Kraut W 1981 Phys. Rev. B 23 5590

    [56]

    Krl P 2000 J. Phys.: Condens. Matter 12 4851

    [57]

    Sipe J E, Shkrebtii A I 2000 Phys. Rev. B 61 5337

    [58]

    Nastos F, Sipe J E 2010 Phys. Rev. B 82 235204

    [59]

    Young S M, Zheng F, Rappe A M 2012 Phys. Rev. Lett. 109 236601

    [60]

    Young S M, Zheng F, Rappe A M 2013 Phys. Rev. Lett. 110 057201

    [61]

    Tan L Z, Rappe A M 2016 Phys. Rev. Lett. 116 237402

    [62]

    Wang F, Young S M, Zheng F 2016 Nat. Commun. 7 10419

    [63]

    Starkiewicz J, Sosnowski L, Simpson O 1946 Nature 158 28

    [64]

    Johnson H R, Williams R H, Mee C H B 1975 J. Phys. D: Appl. Phys. 8 1530

    [65]

    Goldstein B, Pensak L 1959 J. Appl. Phys. 30 155

    [66]

    Uspenskii M D, Ivanova N G, Malkis I E 1968 Semiconductors 1 1059

    [67]

    Qin M, Yao K, Liang Y C 2009 J. Appl. Phys. 105 061624

    [68]

    Ichiki M, Furue H 2006 Proc. SPIE 6035 60350P

    [69]

    Xu J, Cao D W, Fang L, Shen M R 2009 J. Appl. Phys. 106 113705

    [70]

    Cao D W, Xu J, Fang L, Shen M R 2010 Appl. Phys. Lett. 96 192101

    [71]

    Qin M, Yao K, Liang Y C 2009 Appl. Phys. Lett. 95 022912

    [72]

    Yang S Y, Martin L W, Byrens S J 2009 Appl. Phys. Lett. 95 062909

    [73]

    Zheng F G, Xu J, Fang L, Shen M R 2008 Appl. Phys. Lett. 93 172101

    [74]

    Chen B, Li M, Liu Y W 2011 Nanotechnology 22 195201

    [75]

    Cao D W, Zhang H, Fang L, Shen M R 2010 Appl. Phys. Lett. 97 102104

    [76]

    Yi H, Choi T, Choi S, Oh Y S, Cheong S W 2011 Adv. Mater. 23 3403

    [77]

    Choi T, Lee S, Choi Y J, Kiryukhin V, Cheong S W 2009 Science 324 63

    [78]

    Kim D, Jo J, Kim Y 2005 Phys. Rev. Lett. 95 237602

    [79]

    Shvydaka D, Karpov V G 2008 Appl. Phys. Lett. 92 053507

    [80]

    Huang F, Liu X 2013 Appl. Phys. Lett. 102 103501

    [81]

    Zhang N, Yokota H, Glazer A, Ren Z, Keen D, Keeble D, Thomas P, Ye Z G 2014 Nat. Commun. 5 5231

    [82]

    Catlow C R A, Guo Z X, Miskufova M, Shevlin S A, Smith A G H, Sokol A A, Walsh A, Wilson D J, Woodley S M 2010 Philos. Trans. R. Soc. A 368 3379

    [83]

    Walsh A, Catlow C R A, Smith A G H, Sokol A A, Woodley S M 2011 Phys. Rev. B 83 220301

    [84]

    Nechache R, Harnagea C, Li S, Cardenas L, Huang W, Chakrabartty J, Rosei F 2015 Nat. Photon. 9 61

    [85]

    Zheng F, Xin Y, Huang W, Zhang J, Wang X, Shen M R, Dong W, Fang L, Bai Y, Shen X, Hao J 2014 J. Mater. Chem. A 2 1363

    [86]

    Wang F, Grinberg I, Rappe A M 2014 Phys. Rev. B 89 235105

    [87]

    Wang F, Grinberg I, Rappe A M 2014 Appl. Phys. Lett. 104 152903

    [88]

    Ju S, Cai T Y, Guo G Y 2009 J. Chem. Phys. 130 214708

    [89]

    Guo R, You L, Zhou Y, Lim Z S, Zou X, Chen L, Ramesh R, Wang J 2013 Nat. Commun. 4 1990

    [90]

    Hu W J, Wang Z, Yu W, Wu T 2016 Nat. Commun. 7 10808

    [91]

    Yang M, Luo Z, Kim D J, Alexe M 2017 Appl. Phys. Lett. 110 183902

    [92]

    Kim H S, Mora-Sero I, Gonzalez-Pedro V, Fabregat-Santiago F, Juarez-Perez E J, Park N G, Bisquert J 2013 Nat. Commun. 4 2242

    [93]

    Carnie M J, Charbonnaeu C, Davies M L, Troughton J, Watson T M, Wojciechowski K, Snaith H, Worsley D A 2013 Chem. Commun. 49 7893

    [94]

    Liu M, Johnston M B, Snaith H J 2013 Nature 501 395

    [95]

    Zhou H, Chen Q, Li G, Luo S, Song T B, Duan H S, Hong Z, You J, Liu Y, Yang Y 2014 Science 345 542

    [96]

    Noel N K, Stranks S D, Abate A, Wehrenfennig C, Guarnera S, Haghighirad A, Sadhanala A, Eperon G E, Pathak S K, Johnston M B, Petrozza A, Herz L, Snaith H 2014 Energy Environ. Sci. 7 3061

    [97]

    Umari P, Mosconi E, de Angelis F 2014 Sci. Rep. 4 4467

    [98]

    Brivio F, Walker A B, Walsh A 2013 APL Mater. 1 042111

    [99]

    Frost J M, Butler K T, Brivio F, Hendon C H, van Schilfgaarde M, Walsh A 2014 Nano Lett. 14 2584

    [100]

    Gottesman R, Haltzi E, Gouda L, Tirosh S, Bouhadana Y, Zaban A, Mosconi E, de Angelis F 2014 J. Phys. Chem. Lett. 5 2662

    [101]

    Mitzi D B, Wang S, Field C A, Chess C A, Guloy A M 1995 Science 267 1473

    [102]

    Calabrese J, Jones N, Harlow R, Herron N, Thorn D, Wang Y 1991 J. Am. Chem. Soc. 113 2328

    [103]

    Borriello I, Cantele G, Ninno D 2008 Phys. Rev. B 77 235214

    [104]

    Snaith H J, Abate A, Ball J M, Eperon G E, Leijtens T, Noel N K, Stranks S D, Wang J T W, Wojciechowski K, Zhang W 2014 J. Phys. Chem. Lett. 5 1511

    [105]

    Kutes Y, Ye L, Zhou Y, Pang S, Huey B D, Padture N P 2014 J. Phys. Chem. Lett. 5 3335

    [106]

    Zheng F, Takenaka H, Wang F, Koocher N Z, Rappe A M 2015 J. Phys. Chem. Lett. 6 31

    [107]

    Huang X, Paudel T R, Dong S, Tsymbal E Y 2015 Phys. Rev. B 92 125201

    [108]

    Inaguma Y, Yoshida M, Katsumata T 2008 J. Am. Chem. Soc. 130 6704

    [109]

    Inaguma Y, Aimi A, Shirako Y, Sakurai D, Mori D, Kojitani H, Akaogi M, Nakayama M 2014 J. Am. Chem. Soc. 136 2748

    [110]

    Inaguma Y, Tanaka K, Tsuchiya T, Mori D, Katsumata T, Ohba T, Hiraki K, Takahashi T, Saitoh H 2011 J. Am. Chem. Soc. 133 16920

    [111]

    Li M R, Adem U, McMitchell S R, Xu Z, Thomas C I, Warren J E, Schiffmann F 2012 J. Am. Chem. Soc. 134 3737

    [112]

    Li M R, Stephens P W, Retuerto M, Sarkar T, Grams C P, Hemberger J, Croft M C, Walker D, Greenblatt M 2014 J. Am. Chem. Soc. 136 8508

    [113]

    Baettig P, Spaldin N A 2005 Appl. Phys. Lett. 86 012505

    [114]

    Ju S, Guo G Y 2008 Appl. Phys. Lett. 92 202504

    [115]

    Plov L, Chandra P, Rabe K M 2010 Phys. Rev. Lett. 104 037202

    [116]

    Diguez O, iguez J 2011 Phys. Rev. Lett. 107 057601

    [117]

    Wang P S, Ren W, Bellaiche L, Xiang H J 2015 Phys. Rev. Lett. 114 147204

    [118]

    Young S M, Zheng F, Rappe A M 2015 Phys. Rev. Appl. 4 054004

    [119]

    He J, Franchini C, Rondinelli J M 2016 Chem. Mater. 28 25

    [120]

    Stroppa A, Sante D D, Barone P, Bokdam M, Kresse G, Franchini C, Whangbo M H, Picozzi S 2014 Nat. Commun. 5 5900

    [121]

    Ju S, Cai T Y 2009 Appl. Phys. Lett. 95 112506

    [122]

    Ju S, Cai T Y 2009 Appl. Phys. Lett. 95 231906

    [123]

    Ju S, Cai T Y, Wei C I, Guo G Y 2009 Opt. Lett. 34 3860

    [124]

    Ju S, Cai T Y 2008 Appl. Phys. Lett. 93 251904

    [125]

    Ju S, Cai T Y 2009 Appl. Phys. Lett. 94 191908

    [126]

    Ju S, Guo G Y 2008 J. Chem. Phys. 129 194704

  • [1]

    Green M A, Bremner S P 2017 Nat. Mater. 16 23

    [2]

    Chapin D M, Fuller C S, Pearson G L A 1954 J. Appl. Phys. 25 676

    [3]

    Shockley W, Queisser H J 1961 J. Appl. Phys. 32 510

    [4]

    Lopez N, Reichertz L A, Yu K M 2011 Phys. Rev. Lett. 106 028701

    [5]

    Jackson E D 1958 Trans Conf. Use Solar Energy 5 122

    [6]

    Green M A, Keevers M J, Thomas I, Lasich J B, Emery K 2015 Prog. Photovolt. 23 685

    [7]

    Fridkin V M 1979 Photoferroelectrics (Berlin: Springer-Verlag)

    [8]

    King-Smith R D, Vanderbilt D 1993 Phys. Rev. B 47 1651

    [9]

    Seidel J, Eng L M 2014 Curr. Appl. Phys. 14 1083

    [10]

    Bulter K T, Frost J M, Walsh A 2015 Energy Environ. Sci. 8 838

    [11]

    Hu Z, Tian M, Nysten B, Jonas A M 2009 Nat. Mater. 8 62

    [12]

    Scott J F 2007 Science 315 954

    [13]

    Garcia V, Bibes M 2012 Nature 483 279

    [14]

    Lee D, Yang S M, Kim T H, Jeon B C, Kim Y S, Yoon J G, Lee H N, Baek S H, Eom C B, Noh T W 2012 Adv. Mater. 24 402

    [15]

    Dong S, Liu J M, Cheong S W, Ren Z 2015 Adv. Phys. 64 519

    [16]

    Garcia V, Bibes M, Bocher L, Valencia S, Kronast F, Crassous A, Moya X, Enouz-Vedrenne S, Gloter A, Imhoff D, Deranlot C, Mathur N D, Fusil S, Bouzehouane K, Barthlmy A 2010 Science 327 1106

    [17]

    Ramesh R 2010 Nat. Mater. 9 380

    [18]

    Meyerheim H L, Klimenta F, Ernst A, Mohseni K, Ostanin S, Fechner M, Parihar S, Maznichenko I V, Mertig I, Kirschner J 2011 Phys. Rev. Lett. 106 087203

    [19]

    Cai T Y, Ju S, Sun H, Li Z Y 2008 Prog. Phys. 1 50 (in Chinese) [蔡田怡, 雎胜, 孙华, 李振亚 2008 物理学进展 1 50]

    [20]

    Weng Y K, Lin L F, Dagotto E, Dong S 2016 Phys. Rev. Lett. 117 037601

    [21]

    Cai T Y, Ju S, Lee J, Sai N, Demkov A A, Niu Q, Li Z Y, Shi J R, Wang E G 2009 Phys. Rev. B 80 140415

    [22]

    Cai T Y, Liu S C, Ju S, Liu C Y, Guo G Y 2017 Phys. Rev. Appl. 8 034034

    [23]

    Yuan Y, Xiao Z, Yang B, Huang J 2014 J. Mater. Chem. A 2 6027

    [24]

    Tan L Z, Zheng F, Young S M, Wang F, Liu S, Rappe A M 2016 npj Comput. Mater. 2 16026

    [25]

    Yang S Y, Seidel J, Byrnes S J, Shafer P, Yang C H, Rossell M D, Yu P, Chu Y H, Scott J F, Ager Ⅲ J W, Martin L W, Ramesh R 2010 Nat. Nanotechnol. 5 143

    [26]

    Young S M, Rappe A M 2012 Phys. Rev. Lett. 109 116601

    [27]

    Grinberg I, West D V, Torres M, Gou G, Stein D M, Wu L, Chen G, Gallo E M, Akbashev A R, Davies P K, Spanier J E, Rappe A M 2013 Nature 503 509

    [28]

    Alexe M, Hesse D 2011 Nat. Commun. 2 256

    [29]

    Bhatnagar A, Chaudhuri A R, Kim Y H, Hesse D, Alexe M 2013 Nat. Commun. 4 2835

    [30]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050

    [31]

    Lee M M, Teuscher J, Miyasaka T, Murakami T N, Snaith H J 2012 Science 338 643

    [32]

    Burschka J, Pellet N, Moon S J, Humphry-Baker R, Gao P, Nazeeruddin M K, Grtze M 2013 Nature 499 316

    [33]

    Heo J H, Im S H, Noh J H, Mandal T N, Lim C S, Chang J A, Lee Y H, Kim H J, Sarkar A, Nazeeruddin M K 2013 Nat. Photon. 7 486

    [34]

    Park N G 2013 J. Phys. Chem. Lett. 4 2423

    [35]

    Bass K K, McAnally R E, Zhou S, Djurovich P I, Thompson M E, Melot B C 2014 Chem. Commun. 50 15819

    [36]

    Bhachu D, Scanlon D, Saban E, Bronstein H, Parkin I, Carmalt C, Palgrave R 2015 J. Mater. Chem. A 3 9071

    [37]

    Zenkevich A, Matveyev Y, Maksimova K, Gaynutdinov R, Tolstikhina A, Fridkin V M 2014 Phys. Rev. B 90 161409

    [38]

    Sturman B S I, Fridkin V M 1992 Photovoltaic and Photorefractive Effects in Noncentrosymmetric Materials (Philadelphia: Gordon and Breach)

    [39]

    Fridkin V M, Popov B N 1978 Sov. Phys. Usp. 21 981V

    [40]

    Koch W T H, Munser R, Ruppel W, Wurfel P 1975 Solid State Commun. 17 847

    [41]

    Chynoweth A G 1956 Phys. Rev. 102 705

    [42]

    Belinicher V I, Sturman B I 1980 Phys.-Usp. 23 199

    [43]

    Lines M E, Glass A M 1977 Principles and Applications of Ferroelectrics and Related Materials (Oxford: Clarendon Press)

    [44]

    Fridkin V M 2012 Applications of Ferroelectrics Held Jointly with 2012 European Conference on the Applications of Polar Dielectrics and 2012 International Symp Piezoresponse Force Microscopy and Nanoscale Phenomena in Polar Materials (ISAF/ECAPD/PFM), Aveiro, Portugal, July 9-13, 2012, pp1, 2

    [45]

    Dresselhaus G 1955 Phys. Rev. 100 580

    [46]

    Even J, Pedesseau L, Jancu J M, Katan C 2013 J. Phys. Chem. Lett. 4 2999

    [47]

    Brivio F, Butler K T, Walsh A, van Schilfgaarde M 2014 Phys. Rev. B 89 155204

    [48]

    Auston D H, Glass A M, Ballman A A 1972 Phys. Rev. Lett. 28 897

    [49]

    Glass A M, von der Linde D, Negran T J 1974 Appl. Phys. Lett. 25 233

    [50]

    Somma C, Reimann K, Flytzanis C, Elsaesser T, Woerner M 2014 Phys. Rev. Lett. 112 146602

    [51]

    Ji W, Yao K, Liang Y C 2010 Adv. Mater. 22 1763

    [52]

    Bieler M, Pierz K, Siegner U, Dawson P 2007 Phys. Rev. B 76 161304

    [53]

    Ogden T R, Gookin D M 1984 Appl. Phys. Lett. 45 995

    [54]

    Nakamura M, Kagawa F, Tanigaki T, Park H S, Matsuda T, Shindo D, Tokura Y, Kawasaki M 2016 Phys. Rev. Lett. 116 156801

    [55]

    von Baltz R, Kraut W 1981 Phys. Rev. B 23 5590

    [56]

    Krl P 2000 J. Phys.: Condens. Matter 12 4851

    [57]

    Sipe J E, Shkrebtii A I 2000 Phys. Rev. B 61 5337

    [58]

    Nastos F, Sipe J E 2010 Phys. Rev. B 82 235204

    [59]

    Young S M, Zheng F, Rappe A M 2012 Phys. Rev. Lett. 109 236601

    [60]

    Young S M, Zheng F, Rappe A M 2013 Phys. Rev. Lett. 110 057201

    [61]

    Tan L Z, Rappe A M 2016 Phys. Rev. Lett. 116 237402

    [62]

    Wang F, Young S M, Zheng F 2016 Nat. Commun. 7 10419

    [63]

    Starkiewicz J, Sosnowski L, Simpson O 1946 Nature 158 28

    [64]

    Johnson H R, Williams R H, Mee C H B 1975 J. Phys. D: Appl. Phys. 8 1530

    [65]

    Goldstein B, Pensak L 1959 J. Appl. Phys. 30 155

    [66]

    Uspenskii M D, Ivanova N G, Malkis I E 1968 Semiconductors 1 1059

    [67]

    Qin M, Yao K, Liang Y C 2009 J. Appl. Phys. 105 061624

    [68]

    Ichiki M, Furue H 2006 Proc. SPIE 6035 60350P

    [69]

    Xu J, Cao D W, Fang L, Shen M R 2009 J. Appl. Phys. 106 113705

    [70]

    Cao D W, Xu J, Fang L, Shen M R 2010 Appl. Phys. Lett. 96 192101

    [71]

    Qin M, Yao K, Liang Y C 2009 Appl. Phys. Lett. 95 022912

    [72]

    Yang S Y, Martin L W, Byrens S J 2009 Appl. Phys. Lett. 95 062909

    [73]

    Zheng F G, Xu J, Fang L, Shen M R 2008 Appl. Phys. Lett. 93 172101

    [74]

    Chen B, Li M, Liu Y W 2011 Nanotechnology 22 195201

    [75]

    Cao D W, Zhang H, Fang L, Shen M R 2010 Appl. Phys. Lett. 97 102104

    [76]

    Yi H, Choi T, Choi S, Oh Y S, Cheong S W 2011 Adv. Mater. 23 3403

    [77]

    Choi T, Lee S, Choi Y J, Kiryukhin V, Cheong S W 2009 Science 324 63

    [78]

    Kim D, Jo J, Kim Y 2005 Phys. Rev. Lett. 95 237602

    [79]

    Shvydaka D, Karpov V G 2008 Appl. Phys. Lett. 92 053507

    [80]

    Huang F, Liu X 2013 Appl. Phys. Lett. 102 103501

    [81]

    Zhang N, Yokota H, Glazer A, Ren Z, Keen D, Keeble D, Thomas P, Ye Z G 2014 Nat. Commun. 5 5231

    [82]

    Catlow C R A, Guo Z X, Miskufova M, Shevlin S A, Smith A G H, Sokol A A, Walsh A, Wilson D J, Woodley S M 2010 Philos. Trans. R. Soc. A 368 3379

    [83]

    Walsh A, Catlow C R A, Smith A G H, Sokol A A, Woodley S M 2011 Phys. Rev. B 83 220301

    [84]

    Nechache R, Harnagea C, Li S, Cardenas L, Huang W, Chakrabartty J, Rosei F 2015 Nat. Photon. 9 61

    [85]

    Zheng F, Xin Y, Huang W, Zhang J, Wang X, Shen M R, Dong W, Fang L, Bai Y, Shen X, Hao J 2014 J. Mater. Chem. A 2 1363

    [86]

    Wang F, Grinberg I, Rappe A M 2014 Phys. Rev. B 89 235105

    [87]

    Wang F, Grinberg I, Rappe A M 2014 Appl. Phys. Lett. 104 152903

    [88]

    Ju S, Cai T Y, Guo G Y 2009 J. Chem. Phys. 130 214708

    [89]

    Guo R, You L, Zhou Y, Lim Z S, Zou X, Chen L, Ramesh R, Wang J 2013 Nat. Commun. 4 1990

    [90]

    Hu W J, Wang Z, Yu W, Wu T 2016 Nat. Commun. 7 10808

    [91]

    Yang M, Luo Z, Kim D J, Alexe M 2017 Appl. Phys. Lett. 110 183902

    [92]

    Kim H S, Mora-Sero I, Gonzalez-Pedro V, Fabregat-Santiago F, Juarez-Perez E J, Park N G, Bisquert J 2013 Nat. Commun. 4 2242

    [93]

    Carnie M J, Charbonnaeu C, Davies M L, Troughton J, Watson T M, Wojciechowski K, Snaith H, Worsley D A 2013 Chem. Commun. 49 7893

    [94]

    Liu M, Johnston M B, Snaith H J 2013 Nature 501 395

    [95]

    Zhou H, Chen Q, Li G, Luo S, Song T B, Duan H S, Hong Z, You J, Liu Y, Yang Y 2014 Science 345 542

    [96]

    Noel N K, Stranks S D, Abate A, Wehrenfennig C, Guarnera S, Haghighirad A, Sadhanala A, Eperon G E, Pathak S K, Johnston M B, Petrozza A, Herz L, Snaith H 2014 Energy Environ. Sci. 7 3061

    [97]

    Umari P, Mosconi E, de Angelis F 2014 Sci. Rep. 4 4467

    [98]

    Brivio F, Walker A B, Walsh A 2013 APL Mater. 1 042111

    [99]

    Frost J M, Butler K T, Brivio F, Hendon C H, van Schilfgaarde M, Walsh A 2014 Nano Lett. 14 2584

    [100]

    Gottesman R, Haltzi E, Gouda L, Tirosh S, Bouhadana Y, Zaban A, Mosconi E, de Angelis F 2014 J. Phys. Chem. Lett. 5 2662

    [101]

    Mitzi D B, Wang S, Field C A, Chess C A, Guloy A M 1995 Science 267 1473

    [102]

    Calabrese J, Jones N, Harlow R, Herron N, Thorn D, Wang Y 1991 J. Am. Chem. Soc. 113 2328

    [103]

    Borriello I, Cantele G, Ninno D 2008 Phys. Rev. B 77 235214

    [104]

    Snaith H J, Abate A, Ball J M, Eperon G E, Leijtens T, Noel N K, Stranks S D, Wang J T W, Wojciechowski K, Zhang W 2014 J. Phys. Chem. Lett. 5 1511

    [105]

    Kutes Y, Ye L, Zhou Y, Pang S, Huey B D, Padture N P 2014 J. Phys. Chem. Lett. 5 3335

    [106]

    Zheng F, Takenaka H, Wang F, Koocher N Z, Rappe A M 2015 J. Phys. Chem. Lett. 6 31

    [107]

    Huang X, Paudel T R, Dong S, Tsymbal E Y 2015 Phys. Rev. B 92 125201

    [108]

    Inaguma Y, Yoshida M, Katsumata T 2008 J. Am. Chem. Soc. 130 6704

    [109]

    Inaguma Y, Aimi A, Shirako Y, Sakurai D, Mori D, Kojitani H, Akaogi M, Nakayama M 2014 J. Am. Chem. Soc. 136 2748

    [110]

    Inaguma Y, Tanaka K, Tsuchiya T, Mori D, Katsumata T, Ohba T, Hiraki K, Takahashi T, Saitoh H 2011 J. Am. Chem. Soc. 133 16920

    [111]

    Li M R, Adem U, McMitchell S R, Xu Z, Thomas C I, Warren J E, Schiffmann F 2012 J. Am. Chem. Soc. 134 3737

    [112]

    Li M R, Stephens P W, Retuerto M, Sarkar T, Grams C P, Hemberger J, Croft M C, Walker D, Greenblatt M 2014 J. Am. Chem. Soc. 136 8508

    [113]

    Baettig P, Spaldin N A 2005 Appl. Phys. Lett. 86 012505

    [114]

    Ju S, Guo G Y 2008 Appl. Phys. Lett. 92 202504

    [115]

    Plov L, Chandra P, Rabe K M 2010 Phys. Rev. Lett. 104 037202

    [116]

    Diguez O, iguez J 2011 Phys. Rev. Lett. 107 057601

    [117]

    Wang P S, Ren W, Bellaiche L, Xiang H J 2015 Phys. Rev. Lett. 114 147204

    [118]

    Young S M, Zheng F, Rappe A M 2015 Phys. Rev. Appl. 4 054004

    [119]

    He J, Franchini C, Rondinelli J M 2016 Chem. Mater. 28 25

    [120]

    Stroppa A, Sante D D, Barone P, Bokdam M, Kresse G, Franchini C, Whangbo M H, Picozzi S 2014 Nat. Commun. 5 5900

    [121]

    Ju S, Cai T Y 2009 Appl. Phys. Lett. 95 112506

    [122]

    Ju S, Cai T Y 2009 Appl. Phys. Lett. 95 231906

    [123]

    Ju S, Cai T Y, Wei C I, Guo G Y 2009 Opt. Lett. 34 3860

    [124]

    Ju S, Cai T Y 2008 Appl. Phys. Lett. 93 251904

    [125]

    Ju S, Cai T Y 2009 Appl. Phys. Lett. 94 191908

    [126]

    Ju S, Guo G Y 2008 J. Chem. Phys. 129 194704

  • [1] Juan Ting, Xing Jia-He, Zeng Fan-Cong, Zheng Xin, Xu Lin. Performance of perovskite solar cells based on SnO2:DPEPO hybrid electron transport layer. Acta Physica Sinica, 2024, 73(19): 198401. doi: 10.7498/aps.73.20240827
    [2] Liu Heng, Li Ye, Du Meng-Chao, Qiu Peng, He Ying-Feng, Song Yi-Meng, Wei Hui-Yun, Zhu Xiao-Li, Tian Feng, Peng Ming-Zeng, Zheng Xin-He. Atomic layer deposition of AlGaN alloy and its application in quantum dot sensitized solar cells. Acta Physica Sinica, 2023, 72(13): 137701. doi: 10.7498/aps.72.20230113
    [3] Huo Guan-Zhong, Su Chao, Wang Ke, Ye Qing-Ying, Zhuang Bin, Chen Shui-Yuan, Huang Zhi-Gao. Magnetic field modulation of photocurrent in BiFeO3 film. Acta Physica Sinica, 2023, 72(6): 067501. doi: 10.7498/aps.72.20222053
    [4] Zhang Ao, Zhang Chun-Xiu, Zhang Chun-Mei, Tian Yi-Min, Yan Jun, Meng Tao. Effects of CH3NH3 polymer formation on performance of organic-inorganic hybrid perovskite solar cell. Acta Physica Sinica, 2021, 70(16): 168801. doi: 10.7498/aps.70.20210353
    [5] Lu Sheng-Guo, Li Dan-Dan, Lin Xiong-Wei, Jian Xiao-Dong, Zhao Xiao-Bo, Yao Ying-Bang, Tao Tao, Liang Bo. Influence of electric field on the phenomenological coefficient and electrocaloric strength in ferroelectrics. Acta Physica Sinica, 2020, 69(12): 127701. doi: 10.7498/aps.69.20200296
    [6] Fu Peng-Fei, Yu Dan-Ni, Peng Zi-Jian, Gong Jin-Kang, Ning Zhi-Jun. Perovskite solar cells passivated by distorted two-dimensional structure. Acta Physica Sinica, 2019, 68(15): 158802. doi: 10.7498/aps.68.20190306
    [7] Xia Jun-Min, Liang Chao, Xing Gui-Chuan. Inkjet printed perovskite solar cells: progress and prospects. Acta Physica Sinica, 2019, 68(15): 158807. doi: 10.7498/aps.68.20190302
    [8] Shuai Jia-Li, Liu Xiang-Xin, Yang Biao. Transport phenomenon of anormalous carriers in ferroelectric-semiconductor coupled solar cell. Acta Physica Sinica, 2016, 65(11): 118101. doi: 10.7498/aps.65.118101
    [9] Fan Wei, Zeng Zhi. Quaternary sulphides Cu2Zn(Ti, Zr, Hf)S4, the new type of photovoltaic materials. Acta Physica Sinica, 2016, 65(6): 068801. doi: 10.7498/aps.65.068801
    [10] Zhang Dan-Fei, Zheng Ling-Ling, Ma Ying-Zhuang, Wang Shu-Feng, Bian Zu-Qiang, Huang Chun-Hui, Gong Qi-Huang, Xiao Li-Xin. Factors influencing the stability of perovskite solar cells. Acta Physica Sinica, 2015, 64(3): 038803. doi: 10.7498/aps.64.038803
    [11] Yuan Huai-Liang, Li Jun-Peng, Wang Ming-Kui. Recent progress in research on solid organic-inorganic hybrid solar cells. Acta Physica Sinica, 2015, 64(3): 038405. doi: 10.7498/aps.64.038405
    [12] Fan Wei, Zeng Zhi. First-principles studies on the properties of Cu2ZnSnS4 grain-boundaries due to photovoltaic effect. Acta Physica Sinica, 2015, 64(23): 238801. doi: 10.7498/aps.64.238801
    [13] Ding Mei-Bin, Lou Chao-Gang, Wang Qi-Long, Sun Qiang. Influence of quantum wells on the quantum efficiency of GaAs solar cells. Acta Physica Sinica, 2014, 63(19): 198502. doi: 10.7498/aps.63.198502
    [14] Ke Shao-Ying, Wang Chong, Pan Tao, He Peng, Yang Jie, Yang Yu. Optimization design of hydrogenated amorphous silicon germanium thin film solar cell with graded band gap profile. Acta Physica Sinica, 2014, 63(2): 028802. doi: 10.7498/aps.63.028802
    [15] Wang Ying-Long, Zhang Peng-Cheng, Liu Hong-Rang, Liu Bao-Ting, Fu Guang-Sheng. Effects of grain size and substrate stress of ferroelectric film on the physical properties. Acta Physica Sinica, 2011, 60(7): 077702. doi: 10.7498/aps.60.077702
    [16] Chen Xiao-Bo, Yang Guo-Jian, Zhang Chun-Lin, Li Yong-Liang, Liao Hong-Bo, Zhang Yun-Zhi, Chen Luan, Wang Ya-Fei. Infrared quantum-cutting analysis of Er0.3Gd0.7VO4 crystal for solar cell application. Acta Physica Sinica, 2010, 59(11): 8191-8199. doi: 10.7498/aps.59.8191
    [17] Hao Hui-Ying, Kong Guang-Lin, Zeng Xiang-Bo, Xu Ying, Diao Hong-Wei, Liao Xian-Bo. Transition films from amporphous to microcrystalline silicon and solar cells. Acta Physica Sinica, 2005, 54(7): 3327-3331. doi: 10.7498/aps.54.3327
    [18] Wang Yuan-Xu, Wang Chun-Lei, Yuan Min, Zhao Ming-Lei, Zhong Wei-Lie. First principle study on optical properties of KTa0.5Nb0.5O3. Acta Physica Sinica, 2004, 53(9): 3141-3145. doi: 10.7498/aps.53.3141
    [19] He Guo-Gang, Wang Xiao-Sheng, She Wei-Long. . Acta Physica Sinica, 2002, 51(10): 2270-2275. doi: 10.7498/aps.51.2270
    [20] Wang Yuan-Xu, Zhong Wei-Lie, Wang Chun-Lei, Zhang Pei-Lin. . Acta Physica Sinica, 2002, 51(1): 171-173. doi: 10.7498/aps.51.171
Metrics
  • Abstract views:  21202
  • PDF Downloads:  1688
  • Cited By: 0
Publishing process
  • Received Date:  18 May 2018
  • Accepted Date:  13 June 2018
  • Published Online:  05 August 2018

/

返回文章
返回
Baidu
map