搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铁电半导体耦合薄膜电池中的反常载流子传输现象

帅佳丽 刘向鑫 杨彪

引用本文:
Citation:

铁电半导体耦合薄膜电池中的反常载流子传输现象

帅佳丽, 刘向鑫, 杨彪

Transport phenomenon of anormalous carriers in ferroelectric-semiconductor coupled solar cell

Shuai Jia-Li, Liu Xiang-Xin, Yang Biao
PDF
导出引用
  • CdS-CdTe铁电半导体耦合太阳能电池是一种新型太阳能电池, 其工作机理是光伏材料CdTe吸收光子产生的电子空穴对, 在铁电材料CdS 极化形成的内建电场作用下向两极运动, 通过前后电极引出形成电流. 本文利用原子力显微镜(AFM)进行导电AFM扫描, 得到的CdS-CdTe 铁电半导体耦合太阳能电池薄膜表面微观电流分布出现了一些反常的现象, CdTe晶粒边界处存在百纳米级别的小颗粒覆盖晶界, 晶界不导电, 大电流区域沿晶界边缘在晶粒内分布. 作为对比, 同样条件下制得的纯CdTe薄膜晶界却存在明显的导电现象. 在进行导电AFM扫描时, 分别对两组薄膜样品施加方向相反的直流偏压, 发现CdS-CdTe 铁电半导体耦合太阳能电池薄膜晶界处存在明显的压电现象, 证明CdS-CdTe 铁电半导体耦合太阳能电池薄膜中不导电晶界很有可能是具有压电性的富S的CdS1-xTex颗粒. 扫描透射电镜分析也证实了这些小颗粒为六方相富S的CdS1-xTex 合金. 同时, 经过六个月的定期测试, 发现CdS 铁电半导体耦合太阳能电池出现效率增长的异常现象, 最高电池效率已达13.2%, 该效率是目前已知的铁电光伏器件中最高的.
    In recent years, a variety of new-concept solar cells have attracted the attention of many scholars. The CdS-CdTe ferroelectric-semiconductor coupled (FSC) solar cell is a novel concept of photovoltaic device that is designed with ferroelectric nano particles of S-rich CdS1-xTex, which are embedded in the light-absorbing semiconductors of Te-rich CdSyTe1-y. In our previous work, we have developed a two-step process to fabricate a nano-dipole photovoltaic device, including a thin film deposition in vacuum and high-temperature phase segregation at elevated temperature in sequence. The X-ray diffraction (XRD) and high-resolution scanning transmission electric microscopy (STEM) results confirm the formation of S-rich CdS1-xTex particles with a wurtzite structure embedded in a Te-rich CdSyTe1-y film with a zinc blend structure. The localized ferroelectric hysteretic behavior of these particles is confirmed through piezoelectric force microscopy (PFM). Meanwhile, a set of CdS-CdTe FSC devices with a symmetrical structure of ITO/FSC/ITO is fabricated. We observe not only a reasonable photovoltage output on the order of hundreds of mV but also the hysteretic behavior of photovoltage through external electric field post-fabrication. To search for direct evidence of the working mechanism of the FSC solar cell, we further study the film surface micro current distribution of the FSC thin film solar cell. In this work, we adopt the CAFM method to acquire electron distribution of the FSC thin film surface and STEM, the electron diffraction for element distribution, and crystal structure of FSC thin film. Also, Schottky solar cell of FTO/pure CdTe/metal structure which is fabricated by the same process as the FSC solar cell is used as reference sample in the CAFM analysis. In this work, we fabricate the CdS-CdTe FSC film solar cell through a radio-frequency magnetron sputtering method, whose structure is a glass/FTO/CdSTe/back contact (Cu/Au) configuration. In order to enhance the polarization of nano dipole particles in the device, an electric field bias across the FSC film is applied in the high-temperature phase segregation process. Micro-current distribution in CdS-CdTe FSC solar cell is investigated by CAFM. Grain boundaries of the FSC film are found to be non-conductive with high current corridors adjacent to them. And some small particles with diameter about 100 nm are embedded in grain boundaries (GBs) of CdTe grains. By applying positive and opposite voltage separately between measurement tip and TCO of sample, we find that the non-conductive GBs have a strong piezoelectric response, which are most likely S-rich CdS1-xTex in wurtzite structure. By contrast with pure CdTe film, the possibility that the non-conductive particles are CdCl2 residuals is excluded. We also find by STEM that many particles with sizes about 100-200 nm are embedded in FSC thin film, mostly at the GBs. The XRD results confirm that the small particles are S-rich CdS1-xTex particles with a wurtzite structure and the big grains are Te-rich CdSyTe1-y with a zinc blend structure. We could conclude reasonably that the small particles observed in CAFM image probably are S-rich CdS1-xTex:The apparent correlation between the carrier transport channel and nano-dipole material is also established. An interesting discovery from such devices is that such cells exhibit performance improvement over time in months after storage with encapsulation in ambient environment. A linear relationship between Voc and the external field strength is observed and the best conversion efficiency is improved from 11.3% to 13.2% further after 6-month storage. We believe that all these microscopic and macroscopic evidences are consistent with the FSC photovoltaic mechanism.
      通信作者: 刘向鑫, shinelu@mail.iee.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 61274060)、中国科学院电工所百人计划(批准号: Y010411C41)、 中国科学院百人计划择优支持项目(批准号: Y210431C41)、中科院可再生能源高效利用创新交叉团队和国家高技术研究发展计划(批准号: 2015AA050609) 资助的课题.
      Corresponding author: Liu Xiang-Xin, shinelu@mail.iee.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61274060), 100 Talents Program of IEE CAS (Grant No. Y010411C41), 100 Talents Preferred Support Plan of the CAS (Grant No. Y210431C41) and the National High Technology Research and Development Program of China (Grant No. 2015AA050609).
    [1]

    Diana S, Victor K G 2008 Appl. Phys. Lett. 92 053507

    [2]

    Diana S, Victor K G 2008 33th IEEE Photovoltaic Specialists Conference San Diego, CA, USA, May 11-16 2008 p1

    [3]

    Yang B, Liu X X, Li H 2015 Acta Phys. Sin. 64 038807 (in Chinese) [杨彪, 刘向鑫, 李辉 2015 64 038807]

    [4]

    Liu X X 2014 High Power Conv. Technol. 3 10 (in Chinese) [刘向鑫 2014 大功率变流技术 3 10]

    [5]

    Li H M, Zhu J G, Zhuang J, Lin Y H, Wu Y P, Zhou Y 2014 Func. Mater. s1 25 (in Chinese) [李海敏, 朱建国, 庄稼, 林元华, 武元鹏, 周莹 2014 功能材料 s1 25]

    [6]

    Li J D, Li Z Q, Lu X L, Shen H 2000 Acta Phys. Sin. 49 160 (in Chinese) [李景德, 李智强, 陆夏莲, 沈韩 2000 49 160]

    [7]

    Chen B, Li M, Liu Y W, Zuo Z H, Zhuge F, Zhan Q F, Li R W 2011 Nanotechnology 22 195201

    [8]

    Nechache R, Harnagea C, Li S, Cardenas L, Huang W, Chakrabartty J, Rosei F 2015 Nat. Photon. 9 61

    [9]

    Chen H W, Sakai N, Ikegami M, Miyasaka T 2015 J. Phy. Chem.Lett. 6 935

    [10]

    Michele G, Matteo P, Vittoria R, Aurora R, Giuseppe G, Annamaria P, Guglielmo L 2012 Nanoscale 4 1728

    [11]

    Buhbut S, Itzhakov S, Hod I, Dan O, Zaban A 2013 Nano Lett. 13 4456

    [12]

    Huang F, Liu X, Wang W J 2015 Prog. Photovolt: Res. Appl. 23 319

    [13]

    Huang H, Liu X 2013 Appl. Phys. Lett. 102 103501

    [14]

    Li H, Liu X, Lin Y S, Yang B, Du Z M 2015 Phys. Chem. Chem. Phys. 17 11150

    [15]

    Sadewasser S, Glatzel T, Rusu M, Jger-Waldau A, Lux-Steiner M C 2002 Appl. Phys. Lett. 80 2979

    [16]

    Niles D W, Waters D, Rose D 1998 Appl. Surf. Sci. 136 221

    [17]

    Romeo N, Bosio A, Tedeschi R, Canevari V 2000 Mater. Chem. Phys. 66 201

    [18]

    Mccandless B E, Hanket G M, Jensen D G, Birkmire R W 2002 J. Vac. Sci. Technol. 20 1462

  • [1]

    Diana S, Victor K G 2008 Appl. Phys. Lett. 92 053507

    [2]

    Diana S, Victor K G 2008 33th IEEE Photovoltaic Specialists Conference San Diego, CA, USA, May 11-16 2008 p1

    [3]

    Yang B, Liu X X, Li H 2015 Acta Phys. Sin. 64 038807 (in Chinese) [杨彪, 刘向鑫, 李辉 2015 64 038807]

    [4]

    Liu X X 2014 High Power Conv. Technol. 3 10 (in Chinese) [刘向鑫 2014 大功率变流技术 3 10]

    [5]

    Li H M, Zhu J G, Zhuang J, Lin Y H, Wu Y P, Zhou Y 2014 Func. Mater. s1 25 (in Chinese) [李海敏, 朱建国, 庄稼, 林元华, 武元鹏, 周莹 2014 功能材料 s1 25]

    [6]

    Li J D, Li Z Q, Lu X L, Shen H 2000 Acta Phys. Sin. 49 160 (in Chinese) [李景德, 李智强, 陆夏莲, 沈韩 2000 49 160]

    [7]

    Chen B, Li M, Liu Y W, Zuo Z H, Zhuge F, Zhan Q F, Li R W 2011 Nanotechnology 22 195201

    [8]

    Nechache R, Harnagea C, Li S, Cardenas L, Huang W, Chakrabartty J, Rosei F 2015 Nat. Photon. 9 61

    [9]

    Chen H W, Sakai N, Ikegami M, Miyasaka T 2015 J. Phy. Chem.Lett. 6 935

    [10]

    Michele G, Matteo P, Vittoria R, Aurora R, Giuseppe G, Annamaria P, Guglielmo L 2012 Nanoscale 4 1728

    [11]

    Buhbut S, Itzhakov S, Hod I, Dan O, Zaban A 2013 Nano Lett. 13 4456

    [12]

    Huang F, Liu X, Wang W J 2015 Prog. Photovolt: Res. Appl. 23 319

    [13]

    Huang H, Liu X 2013 Appl. Phys. Lett. 102 103501

    [14]

    Li H, Liu X, Lin Y S, Yang B, Du Z M 2015 Phys. Chem. Chem. Phys. 17 11150

    [15]

    Sadewasser S, Glatzel T, Rusu M, Jger-Waldau A, Lux-Steiner M C 2002 Appl. Phys. Lett. 80 2979

    [16]

    Niles D W, Waters D, Rose D 1998 Appl. Surf. Sci. 136 221

    [17]

    Romeo N, Bosio A, Tedeschi R, Canevari V 2000 Mater. Chem. Phys. 66 201

    [18]

    Mccandless B E, Hanket G M, Jensen D G, Birkmire R W 2002 J. Vac. Sci. Technol. 20 1462

  • [1] 仲婷婷, 郝会颖. 基于大气环境下全无机钙钛矿薄膜及碳基太阳能电池的组分调控和添加剂工程.  , 2024, 73(23): . doi: 10.7498/aps.73.20241439
    [2] 隽珽, 邢家赫, 曾凡聪, 郑鑫, 徐琳. 基于SnO2:DPEPO混合电子传输层的钙钛矿太阳能电池性能研究.  , 2024, 73(19): 198401. doi: 10.7498/aps.73.20240827
    [3] 刘恒, 李晔, 杜梦超, 仇鹏, 何荧峰, 宋祎萌, 卫会云, 朱晓丽, 田丰, 彭铭曾, 郑新和. AlGaN合金的原子层沉积及其在量子点敏化太阳能电池的应用.  , 2023, 72(13): 137701. doi: 10.7498/aps.72.20230113
    [4] 张翱, 张春秀, 张春梅, 田益民, 闫君, 孟涛. CH3NH3多聚体的形成对有机-无机杂化钙钛矿太阳能电池性能的影响.  , 2021, 70(16): 168801. doi: 10.7498/aps.70.20210353
    [5] 李家森, 梁春军, 姬超, 宫宏康, 宋奇, 张慧敏, 刘宁. 在空穴传输层聚(3-己基噻吩)中添加1, 8-二碘辛烷改善碳基钙钛矿太阳能电池的性能.  , 2021, 70(19): 198403. doi: 10.7498/aps.70.20210586
    [6] 张玉响, 彭倚天, 郎浩杰. 基于原子力显微镜的石墨烯表面图案化摩擦调控.  , 2020, 69(10): 106801. doi: 10.7498/aps.69.20200124
    [7] 王基铭, 陈科, 谢伟广, 时婷婷, 刘彭义, 郑毅帆, 朱瑞. 溶液法制备全无机钙钛矿太阳能电池的研究进展.  , 2019, 68(15): 158806. doi: 10.7498/aps.68.20190355
    [8] 付鹏飞, 虞丹妮, 彭子健, 龚晋慷, 宁志军. 扭曲二维结构钝化的钙钛矿太阳能电池.  , 2019, 68(15): 158802. doi: 10.7498/aps.68.20190306
    [9] 夏俊民, 梁超, 邢贵川. 喷墨打印钙钛矿太阳能电池研究进展与展望.  , 2019, 68(15): 158807. doi: 10.7498/aps.68.20190302
    [10] 夏祥, 刘喜哲. CH3NH3I在制备CH3NH3PbI(3-x)Clx钙钛矿太阳能电池中的作用.  , 2015, 64(3): 038104. doi: 10.7498/aps.64.038104
    [11] 袁怀亮, 李俊鹏, 王鸣魁. 有机无机杂化固态太阳能电池的研究进展.  , 2015, 64(3): 038405. doi: 10.7498/aps.64.038405
    [12] 张丹霏, 郑灵灵, 马英壮, 王树峰, 卞祖强, 黄春辉, 龚旗煌, 肖立新. 影响杂化钙钛矿太阳能电池稳定性的因素探讨.  , 2015, 64(3): 038803. doi: 10.7498/aps.64.038803
    [13] 丁美斌, 娄朝刚, 王琦龙, 孙强. GaAs量子阱太阳能电池量子效率的研究.  , 2014, 63(19): 198502. doi: 10.7498/aps.63.198502
    [14] 柯少颖, 王茺, 潘涛, 何鹏, 杨杰, 杨宇. 渐变带隙氢化非晶硅锗薄膜太阳能电池的优化设计.  , 2014, 63(2): 028802. doi: 10.7498/aps.63.028802
    [15] 王海啸, 郑新和, 吴渊渊, 甘兴源, 王乃明, 杨辉. 1 eV吸收带边GaInAs/GaNAs超晶格太阳能电池的阱层设计.  , 2013, 62(21): 218801. doi: 10.7498/aps.62.218801
    [16] 赵华波, 王亮, 张朝晖. 钯金属吸附对半导体性碳纳米管电输运的影响.  , 2011, 60(8): 087302. doi: 10.7498/aps.60.087302
    [17] 陈晓波, 杨国建, 张春林, 李永良, 廖红波, 张蕴芝, 陈鸾, 王亚非. Er0.3Gd0.7VO4晶体红外量子剪裁效应及其在太阳能电池应用上的研究.  , 2010, 59(11): 8191-8199. doi: 10.7498/aps.59.8191
    [18] 王 祺, 赵华波, 张朝晖. 高定向热解石墨表面局域导电增强现象的扫描探针显微学研究.  , 2008, 57(5): 3059-3063. doi: 10.7498/aps.57.3059
    [19] 郝会颖, 孔光临, 曾湘波, 许 颖, 刁宏伟, 廖显伯. 非晶/微晶相变域硅薄膜及其太阳能电池.  , 2005, 54(7): 3327-3331. doi: 10.7498/aps.54.3327
    [20] 李晓娜, 聂冬, 董闯, 马腾才, 金星, 张泽. 离子注入合成β-FeSi2薄膜的显微结构.  , 2002, 51(1): 115-124. doi: 10.7498/aps.51.115
计量
  • 文章访问数:  6400
  • PDF下载量:  205
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-25
  • 修回日期:  2016-02-26
  • 刊出日期:  2016-06-05

/

返回文章
返回
Baidu
map