搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

渐变带隙氢化非晶硅锗薄膜太阳能电池的优化设计

柯少颖 王茺 潘涛 何鹏 杨杰 杨宇

引用本文:
Citation:

渐变带隙氢化非晶硅锗薄膜太阳能电池的优化设计

柯少颖, 王茺, 潘涛, 何鹏, 杨杰, 杨宇

Optimization design of hydrogenated amorphous silicon germanium thin film solar cell with graded band gap profile

Ke Shao-Ying, Wang Chong, Pan Tao, He Peng, Yang Jie, Yang Yu
PDF
导出引用
  • 利用一维微电子-光电子结构分析软件(AMPS-1D)在AM1.5G(100 mW/cm2)、室温条件下模拟和比较了有、无渐变带隙氢化非晶硅锗(a-SiGe:H)薄膜太阳能电池的各项性能. 计算结果表明:渐变带隙结构电池具有较高的开路电压(Voc)和较好的填充因子(FF),转换效率(Eff)比非渐变带隙电池提高了0.477%. 研究了氢化非晶硅(a-Si:H)、氢化非晶碳化硅(a-SiC:H)和氢化纳米晶硅(nc-Si:H)三种不同材料的窗口层对a-SiGe:H薄膜太阳能电池性能的影响. 结果显示:在以nc-Si:H为窗口层的电池能带中,费米能级EF已经进入价带,使得窗口层电导率及电池开路电压有所提高,又由于ITO 与p-nc-Si:H 的接触势垒较低,使得接触处的电场降低,更有利于载流子的收集. 另一方面,窗口层与a-SiGe:H 薄膜之间存在较大的带隙差,在p/i界面由于能带补偿作用形成了价带势垒(带阶)ΔEv,阻碍了空穴的迁移,因此我们在p/i界面引入缓冲层,使得能带补偿作用得到释放,更有利于空穴的迁移和收集,得到优化后单结渐变带隙a-SiGe:H薄膜结构太阳能电池的转换效率达到了9.104%.
    The simulation program AMPS-1D (analysis of microelectronic and photonic structures) employed to simulate and compare the performances of hydrogenated amorphous silicon germanium (a-SiGe:H) thin film solar cell with and without band gap grading at a radiation of AM1.5G (100 mW/cm2) and room temperature by introducing energy band engineering. The simulation results show that the efficiency of the solar cell with band gap grading is 0.477% higher than that without band gap grading due to the higher open circuit voltage (Voc) and better fill factor (FF). Subsequently, a-SiGe:H thin film solar cells with three different window layers such as hydrogenated amorphous silicon (a-Si:H), hydrogenated amorphous silicon carbide (a-SiC:H) and hydrogenated nanocrystalline silicon (nc-Si:H) are simulated, respectively. The numeric calculation results indicate that the fermi level EF of the a-SiGe:H thin film solar cell crosses the valence band when nc-Si:H window layer is employed in the simulation. This will improve the conductivity and the open circuit voltage of the solar cell. In addition, the electric field at front contact interface is reduced due to the lower contact barrier height. This may be more beneficial to the carrier collection by front contact. On the other hand, thanks to the wider band-gap difference between the window layer and the intrinsic layer, a potential barrier is built at the valence-band p/i interface due to the band offset. This will hinder the hole migration and collection. Thus, an nc-Si:H buffer layer, which can relax the valence-band offset and be more beneficial to the carrier migration and collection, is introduced at p/i interface. Finally, the optimum conversion efficiency of the a-SiGe:H thin film solar cell with graded band gap is achieved to be 9.104%.
    • 基金项目: 国家自然科学基金(批准号:11274266,10990103)、云南大学理工项目基金(批准号:2012CG008)和云南省应用基础研究计划重点项目(批准号:2013FA029)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11274266, 10990103), the Science and Technology Project of Yunnan University, China (Grant No. 2012CG008), and the Key Project of Applied Basic Research Program of Yunnan Province, China (Grant No. 2013FA029).
    [1]

    Guha S 2004 Sol. Energy 77 887

    [2]

    Huang Z H, Zhang J J, Ni J, Cao Y, Hu Z Y, Li C, Geng X H, Zhao Y 2013 Chin. Phys. B 22 098803

    [3]

    Chou Y P, Lee S C 1998 J. Appl. Phys. 83 4111

    [4]

    Fei Y, Shi L B 2012 J. Atom. Molecul. Phys. 29 532 (in Chinese) [费英, 史力斌 2012 原子与分子 29 532]

    [5]

    Zambrano R J, Rubinelli F A, Arnoldbik W M, Rath J K, Schropp R E I 2004 Sol. Energy Mater. Sol. Cells 81 73

    [6]

    Wang C C, Wuu D S, Lien S Y, Lin Y S, Liu C Y, Hsu C H, Chen C F 2012 Int. J. Photoenergy 2012 1

    [7]

    Yun S J, Kim J K, Lim J W 2011 Electrochem. Solid-State Lett. 15 B9

    [8]

    Cao Y, Zhang J J, Li T W, Huang Z H, Ma J, Ni J, Geng X H, Zhao Y 2013 Acta Phys. Sin. 62 036102 (in Chinese) [曹宇, 张建军, 李天微, 黄振华, 马峻, 倪牮, 耿新华, 赵颖 2013 62 036102]

    [9]

    Yu X M, Zhao J, Hou G F, Zhang J J, Zhang X D, Zhao Y 2013 Acta Phys. Sin. 62 120101 (in Chinese) [于晓明, 赵静, 侯国付, 张建军, 张晓丹, 赵颖 2013 62 120101]

    [10]

    Fonash S J, Arch J, Cuiffi J, Hou J, Howland W, McElheny P, Moquin A, Rogosky M, Tran T, Zhu H, Rubinelli F 1997 The Pennsylvania State University Open Source License

    [11]

    Gueunier M E, Kleider J P, Chatterjee P, Roca i Cabarrocas P, Poissant Y 2003 Thin Solid Films 427 247

    [12]

    Li M B, Shi L B 2012 J. Chin. Chem. Soc. 40 934

    [13]

    Hsu H J, Hsu C H, Tsai C C 2012 J. Non-Cryst. Solids 358 2277

    [14]

    Hao H Y, Kong G L, Zeng X B, Xu Y, Diao H W, Liao X B 2005 Acta Phys. Sin. 54 3370 (in Chinese) [郝会颖, 孔光临, 曾湘波, 许颖, 刁宏伟, 廖显伯 2005 54 3370]

    [15]

    Belfar A, Aïk-Kaci H 2012 Thin Solid Films 525 167

    [16]

    Rath J K, Schropp R E I 1998 Sol. Energy Mater. Sol. Cells 53 189

    [17]

    Chang P K, Hsu W T, Hsieh P T, Lu C H, Yeh C H, Houng M P 2012 Thin Solid Films 520 3096

    [18]

    Hu Z, Liao X, Diao H, Cai Y, Zhang S, Fortunato E, Martins R 2006 J. Non-Cryst. Solids 352 1900

    [19]

    Filonovich S A, Aguas H, Bernacka-Wojcik I, Gaspar C, Vilarigues M, Silva L B, Fortunato E, Martins R 2009 Vacuum 83 1253

    [20]

    Vygranenko Y, Fathi E, Sazonov A, Vieira M, Nathan A 2010 Sol. Energy Mater. Sol. Cells 94 1860

    [21]

    Walsh K M 2007 J. Phys. D: Appl. Phys. 40 1007

    [22]

    Chen A, Zhu K 2012 Sol. Energy 86 393

    [23]

    Oh W K, Hussain S Q, Lee Y J, Lee Y, Ahn S, Yi J 2012 Mater. Res. Bull. 47 3032

    [24]

    Zhang Y, Liu Y, L B, Tang N Y, Wang J Q, Zhang H Y 2009 Acta Phys. Sin. 58 2829 (in Chinese) [张勇, 刘艳, 吕斌, 汤乃云, 王基庆, 张红英 2009 58 2829]

    [25]

    Roca I, Cabarrocas P, Ramprashad S, Liu J Z, Chu V, Maruyama A, Wagner S 1990 Conference Record of the 21st IEEE Photovoltaic Specialists Conference, Orlando, USA, May, 1990 p1610

    [26]

    Palit N, Chatterjee P 1999 J. Appl. Phys. 86 6879

  • [1]

    Guha S 2004 Sol. Energy 77 887

    [2]

    Huang Z H, Zhang J J, Ni J, Cao Y, Hu Z Y, Li C, Geng X H, Zhao Y 2013 Chin. Phys. B 22 098803

    [3]

    Chou Y P, Lee S C 1998 J. Appl. Phys. 83 4111

    [4]

    Fei Y, Shi L B 2012 J. Atom. Molecul. Phys. 29 532 (in Chinese) [费英, 史力斌 2012 原子与分子 29 532]

    [5]

    Zambrano R J, Rubinelli F A, Arnoldbik W M, Rath J K, Schropp R E I 2004 Sol. Energy Mater. Sol. Cells 81 73

    [6]

    Wang C C, Wuu D S, Lien S Y, Lin Y S, Liu C Y, Hsu C H, Chen C F 2012 Int. J. Photoenergy 2012 1

    [7]

    Yun S J, Kim J K, Lim J W 2011 Electrochem. Solid-State Lett. 15 B9

    [8]

    Cao Y, Zhang J J, Li T W, Huang Z H, Ma J, Ni J, Geng X H, Zhao Y 2013 Acta Phys. Sin. 62 036102 (in Chinese) [曹宇, 张建军, 李天微, 黄振华, 马峻, 倪牮, 耿新华, 赵颖 2013 62 036102]

    [9]

    Yu X M, Zhao J, Hou G F, Zhang J J, Zhang X D, Zhao Y 2013 Acta Phys. Sin. 62 120101 (in Chinese) [于晓明, 赵静, 侯国付, 张建军, 张晓丹, 赵颖 2013 62 120101]

    [10]

    Fonash S J, Arch J, Cuiffi J, Hou J, Howland W, McElheny P, Moquin A, Rogosky M, Tran T, Zhu H, Rubinelli F 1997 The Pennsylvania State University Open Source License

    [11]

    Gueunier M E, Kleider J P, Chatterjee P, Roca i Cabarrocas P, Poissant Y 2003 Thin Solid Films 427 247

    [12]

    Li M B, Shi L B 2012 J. Chin. Chem. Soc. 40 934

    [13]

    Hsu H J, Hsu C H, Tsai C C 2012 J. Non-Cryst. Solids 358 2277

    [14]

    Hao H Y, Kong G L, Zeng X B, Xu Y, Diao H W, Liao X B 2005 Acta Phys. Sin. 54 3370 (in Chinese) [郝会颖, 孔光临, 曾湘波, 许颖, 刁宏伟, 廖显伯 2005 54 3370]

    [15]

    Belfar A, Aïk-Kaci H 2012 Thin Solid Films 525 167

    [16]

    Rath J K, Schropp R E I 1998 Sol. Energy Mater. Sol. Cells 53 189

    [17]

    Chang P K, Hsu W T, Hsieh P T, Lu C H, Yeh C H, Houng M P 2012 Thin Solid Films 520 3096

    [18]

    Hu Z, Liao X, Diao H, Cai Y, Zhang S, Fortunato E, Martins R 2006 J. Non-Cryst. Solids 352 1900

    [19]

    Filonovich S A, Aguas H, Bernacka-Wojcik I, Gaspar C, Vilarigues M, Silva L B, Fortunato E, Martins R 2009 Vacuum 83 1253

    [20]

    Vygranenko Y, Fathi E, Sazonov A, Vieira M, Nathan A 2010 Sol. Energy Mater. Sol. Cells 94 1860

    [21]

    Walsh K M 2007 J. Phys. D: Appl. Phys. 40 1007

    [22]

    Chen A, Zhu K 2012 Sol. Energy 86 393

    [23]

    Oh W K, Hussain S Q, Lee Y J, Lee Y, Ahn S, Yi J 2012 Mater. Res. Bull. 47 3032

    [24]

    Zhang Y, Liu Y, L B, Tang N Y, Wang J Q, Zhang H Y 2009 Acta Phys. Sin. 58 2829 (in Chinese) [张勇, 刘艳, 吕斌, 汤乃云, 王基庆, 张红英 2009 58 2829]

    [25]

    Roca I, Cabarrocas P, Ramprashad S, Liu J Z, Chu V, Maruyama A, Wagner S 1990 Conference Record of the 21st IEEE Photovoltaic Specialists Conference, Orlando, USA, May, 1990 p1610

    [26]

    Palit N, Chatterjee P 1999 J. Appl. Phys. 86 6879

  • [1] 隽珽, 邢家赫, 曾凡聪, 郑鑫, 徐琳. 基于SnO2:DPEPO混合电子传输层的钙钛矿太阳能电池性能研究.  , 2024, 73(19): 198401. doi: 10.7498/aps.73.20240827
    [2] 仲婷婷, 郝会颖. 基于大气环境下全无机钙钛矿薄膜及碳基太阳能电池的组分调控和添加剂工程.  , 2024, 73(23): . doi: 10.7498/aps.73.20241439
    [3] 刘恒, 李晔, 杜梦超, 仇鹏, 何荧峰, 宋祎萌, 卫会云, 朱晓丽, 田丰, 彭铭曾, 郑新和. AlGaN合金的原子层沉积及其在量子点敏化太阳能电池的应用.  , 2023, 72(13): 137701. doi: 10.7498/aps.72.20230113
    [4] 张翱, 张春秀, 张春梅, 田益民, 闫君, 孟涛. CH3NH3多聚体的形成对有机-无机杂化钙钛矿太阳能电池性能的影响.  , 2021, 70(16): 168801. doi: 10.7498/aps.70.20210353
    [5] 李家森, 梁春军, 姬超, 宫宏康, 宋奇, 张慧敏, 刘宁. 在空穴传输层聚(3-己基噻吩)中添加1, 8-二碘辛烷改善碳基钙钛矿太阳能电池的性能.  , 2021, 70(19): 198403. doi: 10.7498/aps.70.20210586
    [6] 王基铭, 陈科, 谢伟广, 时婷婷, 刘彭义, 郑毅帆, 朱瑞. 溶液法制备全无机钙钛矿太阳能电池的研究进展.  , 2019, 68(15): 158806. doi: 10.7498/aps.68.20190355
    [7] 付鹏飞, 虞丹妮, 彭子健, 龚晋慷, 宁志军. 扭曲二维结构钝化的钙钛矿太阳能电池.  , 2019, 68(15): 158802. doi: 10.7498/aps.68.20190306
    [8] 夏俊民, 梁超, 邢贵川. 喷墨打印钙钛矿太阳能电池研究进展与展望.  , 2019, 68(15): 158807. doi: 10.7498/aps.68.20190302
    [9] 帅佳丽, 刘向鑫, 杨彪. 铁电半导体耦合薄膜电池中的反常载流子传输现象.  , 2016, 65(11): 118101. doi: 10.7498/aps.65.118101
    [10] 夏祥, 刘喜哲. CH3NH3I在制备CH3NH3PbI(3-x)Clx钙钛矿太阳能电池中的作用.  , 2015, 64(3): 038104. doi: 10.7498/aps.64.038104
    [11] 袁怀亮, 李俊鹏, 王鸣魁. 有机无机杂化固态太阳能电池的研究进展.  , 2015, 64(3): 038405. doi: 10.7498/aps.64.038405
    [12] 张丹霏, 郑灵灵, 马英壮, 王树峰, 卞祖强, 黄春辉, 龚旗煌, 肖立新. 影响杂化钙钛矿太阳能电池稳定性的因素探讨.  , 2015, 64(3): 038803. doi: 10.7498/aps.64.038803
    [13] 毛启楠, 张晓勇, 李学耕, 贺劲鑫, 于平荣, 王东. 溅射后硒化法制备的CIGS薄膜中Ga元素扩散研究.  , 2014, 63(11): 118802. doi: 10.7498/aps.63.118802
    [14] 丁美斌, 娄朝刚, 王琦龙, 孙强. GaAs量子阱太阳能电池量子效率的研究.  , 2014, 63(19): 198502. doi: 10.7498/aps.63.198502
    [15] 王海啸, 郑新和, 吴渊渊, 甘兴源, 王乃明, 杨辉. 1 eV吸收带边GaInAs/GaNAs超晶格太阳能电池的阱层设计.  , 2013, 62(21): 218801. doi: 10.7498/aps.62.218801
    [16] 陈晓波, 杨国建, 张春林, 李永良, 廖红波, 张蕴芝, 陈鸾, 王亚非. Er0.3Gd0.7VO4晶体红外量子剪裁效应及其在太阳能电池应用上的研究.  , 2010, 59(11): 8191-8199. doi: 10.7498/aps.59.8191
    [17] 许 颖, 刁宏伟, 张世斌, 励旭东, 曾湘波, 王文静, 廖显伯. 微量掺碳nc-SiC:H薄膜用于p-i-n太阳电池的窗口层.  , 2007, 56(5): 2915-2919. doi: 10.7498/aps.56.2915
    [18] 郝会颖, 孔光临, 曾湘波, 许 颖, 刁宏伟, 廖显伯. 非晶/微晶两相硅薄膜电池的计算机模拟.  , 2005, 54(7): 3370-3374. doi: 10.7498/aps.54.3370
    [19] 郝会颖, 孔光临, 曾湘波, 许 颖, 刁宏伟, 廖显伯. 非晶/微晶相变域硅薄膜及其太阳能电池.  , 2005, 54(7): 3327-3331. doi: 10.7498/aps.54.3327
    [20] 谢大弢, 赵夔, 王莉芳, 朱凤, 全胜文, 孟铁军, 张保澄, 陈佳洱. 用磁控溅射和真空硒化退火方法制备高质量的铜铟硒多晶薄膜.  , 2002, 51(6): 1377-1382. doi: 10.7498/aps.51.1377
计量
  • 文章访问数:  7358
  • PDF下载量:  618
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-09-15
  • 修回日期:  2013-10-14
  • 刊出日期:  2014-01-05

/

返回文章
返回
Baidu
map