Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Atomic layer deposition of AlGaN alloy and its application in quantum dot sensitized solar cells

Liu Heng Li Ye Du Meng-Chao Qiu Peng He Ying-Feng Song Yi-Meng Wei Hui-Yun Zhu Xiao-Li Tian Feng Peng Ming-Zeng Zheng Xin-He

Citation:

Atomic layer deposition of AlGaN alloy and its application in quantum dot sensitized solar cells

Liu Heng, Li Ye, Du Meng-Chao, Qiu Peng, He Ying-Feng, Song Yi-Meng, Wei Hui-Yun, Zhu Xiao-Li, Tian Feng, Peng Ming-Zeng, Zheng Xin-He
PDF
HTML
Get Citation
  • The role of plasma-enhanced atomic layer deposition growth of AlGaN ternary alloys on c-planar sapphire substrates and the preparation of quantum dot-sensitized solar cells are explored in this work. The interface between the film and the substrate as well as the band gap of AlGaN ternary alloys during atomic layer deposition is dependent on Al component. At high Al fraction, there appears a good interface between the AlGaN alloy film and the substrate, however, the interface becomes rough when the Al fraction is reduced. The AlGaN alloy prepared by atomic layer deposition has a high band gap, which is related to the oxygen content within the film. Subsequently, CdSe/AlGaN/ZnS and CdSe/ZnS/AlGaN structured cells are prepared and analyzed for quantum dot solar cells from AlGaN films with an AlN/GaN cycle ratio of 1∶1. It is found that AlGaN can modify and passivate quantum dots and TiO2, which can wrap and protect the structure of TiO2 and CdSe quantum dot, thus avoiding the recombination of photo-generated carriers. This modification effect is also reflected in the improvement of open-circuit voltage, short-circuit current, filling factor and photovoltaic conversion efficiency of quantum dot solar cells. These factors are discussed in this work, trying to modify carrier transport characteristics of AlGaN films prepared by atomic layer deposition.
      Corresponding author: Zheng Xin-He, xinhezheng@ustb.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2018YFA0703700), the National Natural Science Foundation of China (Grant No. 52002021), and the Fundamental Research Funds for the Central Universities of China (Grant No. FRF-IDRY-20-037).
    [1]

    Parkhomenko R G, De Luca O, Kolodziejczyk L, Modin E, Rudolf P, Martínez D, Cunhad L, Knez M 2021 Dalton. Trans. 50 15062Google Scholar

    [2]

    Zhang X L, Liu Q Y, Liu B D, Yang W J, Li J, Niu P J, Jiang X 2017 J. Mater. Chem. C 5 4319Google Scholar

    [3]

    Zhang X L, Liu B D, Liu Q Y, Yang W J M, Xiong C, Li J, Jiang X 2017 Appl. Mater. Interfaces 9 2669Google Scholar

    [4]

    Deminskyi P, Rouf P, Ivanov I G, Pedersen H 2019 J. Vac. Sci. Technol A 37 020926Google Scholar

    [5]

    Iliopoulos E, Moustakas T D 2002 Appl. Phys. Lett. 81 295Google Scholar

    [6]

    Moon Y T, Kim D J, Park J S, Oh J T, Lee J M, Ok Y W, Kim H, Park S J 2001 Appl. Phys. Lett. 79 599Google Scholar

    [7]

    Wu J 2009 J. Appl. Phys. 106 5

    [8]

    Angerer H, Brunner D, Freudenberg F, Ambacher O, Stutzmann M, Höpler R, Körner H J 1997 Appl. Phys. Lett. 71 1504Google Scholar

    [9]

    Jain S C, Willander M, Narayan J, Overstraeten R V 2000 J. Appl. Phys. 87 965Google Scholar

    [10]

    Tonisch K, Buchheim C, Niebelschütz F, Schober A, Gobsch G, Cimalla V, Goldhahn R 2008 J. Appl. Phys. 104 084516Google Scholar

    [11]

    Jebalin B K, Shobha R A, Prajoon P, Kumar N M, Nirmal D 2015 Microelectron. J. 46 1387Google Scholar

    [12]

    Chakroun A, Jaouad A, Bouchilaoun M, Arenas O, Soltani A, Maher H 2017 Phys. Status Solidi A 214 1600836Google Scholar

    [13]

    Ruterana P, De Saint Jores G, Laügt M, Omnes F, Bellet-Amalric E 2001 Appl. Phys. Lett. 78 344Google Scholar

    [14]

    Yang W X, Zhao Y K, Wu Y Y, Li X F, Xing Z W, Bian L F, Lu S L, Luo M C 2019 J. Cryst. Growth 512 213Google Scholar

    [15]

    Puurunen R L 2005 J. Appl. Phys. 97 9

    [16]

    Ozgit C, Donmez I, Alevli M, Biyikli N 2012 J. Vac. Sci. Technol. A 30 01A124Google Scholar

    [17]

    Liu S J, Zhao G, He Y F, Wei H Y, Li Y, Qiu P, Zheng X H 2019 ACS Appl. Mater. Interfaces 11 35382Google Scholar

    [18]

    Liu S J, He Y F, Wei H Y, Qiu P, Song Y M, An Y L, Zheng X H 2019 Chin. Phys. B 28 026801Google Scholar

    [19]

    Liu S J, Peng M Z, Hou C X, He Y F, Li M L, Zheng X H 2017 Nanoscale Res. Lett. 12 1Google Scholar

    [20]

    Qiu P, Wei H Y, An Y, Wu Q, Du W, Jiang Z, Zheng X H 2019 Ceram Int. 46 5765

    [21]

    He Y F, Li M L, Liu S J, Wei H Y, Ye H Y, Song Y M, Zheng X H 2019 Acta Metall. Sin. (English Letters) 32 1530Google Scholar

    [22]

    He Y F, Li M L, Wei H Y, Song Y, Qiu P, Peng M, Zheng X H 2021 Appl. Surf. Sci. 566 150684Google Scholar

    [23]

    Song Y, He Y F, Li Y, Wei H Y, Qiu P, Huang Q, Zheng X H 2021 Cryst. Growth Des. 21 1778Google Scholar

    [24]

    Song Y M, Li Y F, He Y F, Wei H Y, Qiu P, Hu X T, Su Z L, Jiang Y, Peng M Z, Zheng X H 2022 ACS Appl. Mater. Interfaces 14 16866Google Scholar

    [25]

    Liu S J, Zhao G, He Y F, Li Y F, Wei H Y, Qiu P, Wang X Y, Wang X X, Cheng J D, Peng M Z, Zaera F, Zheng X H 2020 Appl. Phys. Lett. 116 211601Google Scholar

    [26]

    Nepal N, Anderson V R, Hite J K, Eddy C R 2015 Thin Solid Films 589 47Google Scholar

    [27]

    Rouf P, Palisaitis J, Bakhit B, O’Brien N J, Pedersen H 2021 J. Mater. Chem. C 9 13077Google Scholar

    [28]

    Choi S, Ansari A S, Yun H J, Kim H, Shong B, Choi B J 2020 J. Alloy. Compd. 854 157186

    [29]

    Ergen O, Gilbert S M, Pham T, Turner S J, Tan M T Z, Worsley M A, Zettl A 2017 Nat. Mater. 16 522Google Scholar

    [30]

    Wei H Y, Wu J, Qiu P, Liu S, He Y F, Peng MZ, Li D, Meng Q, Zaera F, Zheng X H 2019 J. Mater. Chem. A 7 25347Google Scholar

    [31]

    Wei H Y, Qiu P, Peng M Z, Wu Q, Liu S, An Y, He Y F, Song Y M, Zheng X H 2019 Appl. Surf. Sci. 476 608Google Scholar

    [32]

    李晔, 王茜茜, 卫会云, 仇鹏, 何荧峰, 宋祎萌, 段彰, 申诚涛, 彭铭曾, 郑新和 2021 70 187702Google Scholar

    Li Y, Wang X X, Wei H Y, Qiu P, He Y F, Song Y M, Duan Z, Shen C T, Peng M Z, Zheng X H 2021 Acta Phys. Sin. 70 187702Google Scholar

    [33]

    Zhang Q, Parimoo H, Martel E, Zhao S 2022 Ecs. J. Solid State Sc. 11 116002Google Scholar

    [34]

    Portillo M C, Hernández S G, Bernal Y P, Velis I M, Cab J V, Alcántara S, Alvarado J 2020 Opt. Mater. 108 110206Google Scholar

    [35]

    Koo A, Budde F, Ruck B, Trodahl H, Bittar A, Preston A, Zeinert A 2006 J. Appl. Phys. 99 034312Google Scholar

    [36]

    Choi Y Y, Choi K H, Kim H K 2011 J. Electrochem. Soc. 158 J349Google Scholar

    [37]

    Su L X, Chen S Y, Zhao L Q, Zuo Y Q, Xie J 2020 Appl. Phys. Lett. 117 211101Google Scholar

    [38]

    Sun X J, Wu C, Wang Y C, Guo D Y 2022 J. Vacuum Sci. Technol. B 40 012204Google Scholar

    [39]

    Zhang J, Li S L, Xiong H, Tian W, Li Y, Fang Y Y, Wu Z H, Dai J N, Xu J T, Li X Y, Chen C Q 2014 Nanoscale Res. Lett. 9 341Google Scholar

    [40]

    梁琦, 杨孟骐, 张京阳, 王如志 2022 71 097302Google Scholar

    Liang Q, Yang M Q, Zhang J Y, Wang R Z 2022 Acta Phys. Sin. 71 097302Google Scholar

    [41]

    冯嘉恒, 唐立丹, 刘邦武, 夏洋, 王冰 2013 62 117302Google Scholar

    Feng J H, Tang L D, Liu B W, Xia Y, Wang B 2013 Acta Phys. Sin. 62 117302Google Scholar

    [42]

    Motamedi P, Cadien K 2014 Appl. Surf. Sci. 315 104Google Scholar

    [43]

    Alevli M, Haider A, Kizir S, Leghari S A, Biyikli N 2016 J. Vac. Sci. Technol. A 34 01A137Google Scholar

    [44]

    Wang Q, Cheng X H, Zheng L, Shen L Y, Li J L, Zhang D L, Qian R, Yu Y H 2017 RSC Adv. 7 11745Google Scholar

    [45]

    Qu L H, Peng X G 2002 J. Am. Chem. Soc. 124 2049Google Scholar

    [46]

    Ren F M, Li S J, He C L 2015 Sci. China Mater. 58 490Google Scholar

  • 图 1  (a) 一个完整的AlGaN-PEALD循环中AlN和GaN的生长过程; (b) 在蓝宝石上生长AlGaN的循环结构图

    Figure 1.  (a) Growth process of AlN and GaN in a complete AlGaN-PEALD cycle; (b) diagram of the cycle structure for growing AlGaN on sapphire.

    图 2  A1G1的生长温度与薄膜厚度关系

    Figure 2.  Growth temperature versus film thickness for A1G1.

    图 3  XRR测试图 (a) 200 ℃, 250 ℃和300 ℃下生长的A1G1; (b) 300 ℃下生长的A3G1, A1G1和A1G3

    Figure 3.  XRR test plots: (a) A1G1 grown at 200 ℃, 250 ℃ and 300 ℃; (b) A3G1, A1G1 and A1G3 grown at 300 ℃.

    图 4  300 ℃下, 不同AlN/GaN循环比例的吸收谱图

    Figure 4.  Absorption spectra of different AlN/GaN cycle ratios at 300 ℃.

    图 5  A3G1 (a)—(c), A1G1 (d)—(f), A1G3 (g)—(i)的XPS谱图 (a), (d), (g) Al 2p; (b), (e), (h) Ga 2p3/2; (c), (f), (i) N 1s

    Figure 5.  XPS spectra of A3G1 (a)–(c), A1G1 (d)–(f), A1G3 (g)–(i): (a), (d), (g) Al 2p; (b), (e), (h) Ga 2p3/2; (c), (f), (i) N 1s.

    图 6  CdSe QDs的HRTEM (a)和稳态PL图(b)

    Figure 6.  HRTEM (a) and steady-state PL maps (b) of CdSe QDs.

    图 7  量子点太阳能电池示意图 (a) AlGaN/ZnS; (b) ZnS/AlGaN

    Figure 7.  Schematic diagram of QDSCs: (a) AlGaN/ZnS; (b) ZnS/AlGaN.

    图 8  两种结构下沉积不同周期AlGaN薄膜QDSCs的J-V曲线 (a) 5 cycles; (b) 20 cycles; (c) 30 cycles. (d) 5, 20, 30 cycles的Nyquist曲线

    Figure 8.  J-V curves of QDSCs of AlGaN thin films with different cycles deposited under two structures: (a) 5 cycles; (b) 20 cycles; (c) 30 cycles. (d) Nyquist curves for 5, 20 and 30 cycles.

    表 1  不同循环比例生长的AlGaN薄膜的元素组成

    Table 1.  Elemental composition of AlGaN films grown with different cyclic ratios.

    SamplesAl/%Ga/%N/%O/%C/%
    A3G137.974.2116.0338.563.32
    A1G131.897.2820.8335.184.82
    A1G321.8817.5327.729.533.36
    DownLoad: CSV

    表 2  5, 20和30 cycles AlGaN薄膜不同结构J-V测试结果

    Table 2.  J-V test results for different structures of 5, 20 and 30 cycles AlGaN films.

    SamplesJsc/(mA·cm–2)Voc/VFF/%PCE/%
    5AlGaN/ZnS9.30.5660.283.13
    ZnS/5AlGaN7.710.5360.492.5
    20AlGaN/ZnS8.360.5662.692.91
    ZnS/20AlGaN7.90.5456.872.44
    30AlGaN/ZnS6.020.5165.922.01
    ZnS/30AlGaN5.390.4958.811.57
    RC6.810.5158.592.02
    DownLoad: CSV

    表 3  5, 20和30 cycles AlGaN QDSCs的电化学阻抗谱拟合结果

    Table 3.  Electrochemical impedance spectrum fitting results for 5, 20 and 30 cycles AlGaN QDSCs.

    Samples cycles52030
    ${R_{ {\text{ct-Ti} }{{\text{O} }_{\text{2} } } }}/\Omega$18.9332.7241.97
    DownLoad: CSV
    Baidu
  • [1]

    Parkhomenko R G, De Luca O, Kolodziejczyk L, Modin E, Rudolf P, Martínez D, Cunhad L, Knez M 2021 Dalton. Trans. 50 15062Google Scholar

    [2]

    Zhang X L, Liu Q Y, Liu B D, Yang W J, Li J, Niu P J, Jiang X 2017 J. Mater. Chem. C 5 4319Google Scholar

    [3]

    Zhang X L, Liu B D, Liu Q Y, Yang W J M, Xiong C, Li J, Jiang X 2017 Appl. Mater. Interfaces 9 2669Google Scholar

    [4]

    Deminskyi P, Rouf P, Ivanov I G, Pedersen H 2019 J. Vac. Sci. Technol A 37 020926Google Scholar

    [5]

    Iliopoulos E, Moustakas T D 2002 Appl. Phys. Lett. 81 295Google Scholar

    [6]

    Moon Y T, Kim D J, Park J S, Oh J T, Lee J M, Ok Y W, Kim H, Park S J 2001 Appl. Phys. Lett. 79 599Google Scholar

    [7]

    Wu J 2009 J. Appl. Phys. 106 5

    [8]

    Angerer H, Brunner D, Freudenberg F, Ambacher O, Stutzmann M, Höpler R, Körner H J 1997 Appl. Phys. Lett. 71 1504Google Scholar

    [9]

    Jain S C, Willander M, Narayan J, Overstraeten R V 2000 J. Appl. Phys. 87 965Google Scholar

    [10]

    Tonisch K, Buchheim C, Niebelschütz F, Schober A, Gobsch G, Cimalla V, Goldhahn R 2008 J. Appl. Phys. 104 084516Google Scholar

    [11]

    Jebalin B K, Shobha R A, Prajoon P, Kumar N M, Nirmal D 2015 Microelectron. J. 46 1387Google Scholar

    [12]

    Chakroun A, Jaouad A, Bouchilaoun M, Arenas O, Soltani A, Maher H 2017 Phys. Status Solidi A 214 1600836Google Scholar

    [13]

    Ruterana P, De Saint Jores G, Laügt M, Omnes F, Bellet-Amalric E 2001 Appl. Phys. Lett. 78 344Google Scholar

    [14]

    Yang W X, Zhao Y K, Wu Y Y, Li X F, Xing Z W, Bian L F, Lu S L, Luo M C 2019 J. Cryst. Growth 512 213Google Scholar

    [15]

    Puurunen R L 2005 J. Appl. Phys. 97 9

    [16]

    Ozgit C, Donmez I, Alevli M, Biyikli N 2012 J. Vac. Sci. Technol. A 30 01A124Google Scholar

    [17]

    Liu S J, Zhao G, He Y F, Wei H Y, Li Y, Qiu P, Zheng X H 2019 ACS Appl. Mater. Interfaces 11 35382Google Scholar

    [18]

    Liu S J, He Y F, Wei H Y, Qiu P, Song Y M, An Y L, Zheng X H 2019 Chin. Phys. B 28 026801Google Scholar

    [19]

    Liu S J, Peng M Z, Hou C X, He Y F, Li M L, Zheng X H 2017 Nanoscale Res. Lett. 12 1Google Scholar

    [20]

    Qiu P, Wei H Y, An Y, Wu Q, Du W, Jiang Z, Zheng X H 2019 Ceram Int. 46 5765

    [21]

    He Y F, Li M L, Liu S J, Wei H Y, Ye H Y, Song Y M, Zheng X H 2019 Acta Metall. Sin. (English Letters) 32 1530Google Scholar

    [22]

    He Y F, Li M L, Wei H Y, Song Y, Qiu P, Peng M, Zheng X H 2021 Appl. Surf. Sci. 566 150684Google Scholar

    [23]

    Song Y, He Y F, Li Y, Wei H Y, Qiu P, Huang Q, Zheng X H 2021 Cryst. Growth Des. 21 1778Google Scholar

    [24]

    Song Y M, Li Y F, He Y F, Wei H Y, Qiu P, Hu X T, Su Z L, Jiang Y, Peng M Z, Zheng X H 2022 ACS Appl. Mater. Interfaces 14 16866Google Scholar

    [25]

    Liu S J, Zhao G, He Y F, Li Y F, Wei H Y, Qiu P, Wang X Y, Wang X X, Cheng J D, Peng M Z, Zaera F, Zheng X H 2020 Appl. Phys. Lett. 116 211601Google Scholar

    [26]

    Nepal N, Anderson V R, Hite J K, Eddy C R 2015 Thin Solid Films 589 47Google Scholar

    [27]

    Rouf P, Palisaitis J, Bakhit B, O’Brien N J, Pedersen H 2021 J. Mater. Chem. C 9 13077Google Scholar

    [28]

    Choi S, Ansari A S, Yun H J, Kim H, Shong B, Choi B J 2020 J. Alloy. Compd. 854 157186

    [29]

    Ergen O, Gilbert S M, Pham T, Turner S J, Tan M T Z, Worsley M A, Zettl A 2017 Nat. Mater. 16 522Google Scholar

    [30]

    Wei H Y, Wu J, Qiu P, Liu S, He Y F, Peng MZ, Li D, Meng Q, Zaera F, Zheng X H 2019 J. Mater. Chem. A 7 25347Google Scholar

    [31]

    Wei H Y, Qiu P, Peng M Z, Wu Q, Liu S, An Y, He Y F, Song Y M, Zheng X H 2019 Appl. Surf. Sci. 476 608Google Scholar

    [32]

    李晔, 王茜茜, 卫会云, 仇鹏, 何荧峰, 宋祎萌, 段彰, 申诚涛, 彭铭曾, 郑新和 2021 70 187702Google Scholar

    Li Y, Wang X X, Wei H Y, Qiu P, He Y F, Song Y M, Duan Z, Shen C T, Peng M Z, Zheng X H 2021 Acta Phys. Sin. 70 187702Google Scholar

    [33]

    Zhang Q, Parimoo H, Martel E, Zhao S 2022 Ecs. J. Solid State Sc. 11 116002Google Scholar

    [34]

    Portillo M C, Hernández S G, Bernal Y P, Velis I M, Cab J V, Alcántara S, Alvarado J 2020 Opt. Mater. 108 110206Google Scholar

    [35]

    Koo A, Budde F, Ruck B, Trodahl H, Bittar A, Preston A, Zeinert A 2006 J. Appl. Phys. 99 034312Google Scholar

    [36]

    Choi Y Y, Choi K H, Kim H K 2011 J. Electrochem. Soc. 158 J349Google Scholar

    [37]

    Su L X, Chen S Y, Zhao L Q, Zuo Y Q, Xie J 2020 Appl. Phys. Lett. 117 211101Google Scholar

    [38]

    Sun X J, Wu C, Wang Y C, Guo D Y 2022 J. Vacuum Sci. Technol. B 40 012204Google Scholar

    [39]

    Zhang J, Li S L, Xiong H, Tian W, Li Y, Fang Y Y, Wu Z H, Dai J N, Xu J T, Li X Y, Chen C Q 2014 Nanoscale Res. Lett. 9 341Google Scholar

    [40]

    梁琦, 杨孟骐, 张京阳, 王如志 2022 71 097302Google Scholar

    Liang Q, Yang M Q, Zhang J Y, Wang R Z 2022 Acta Phys. Sin. 71 097302Google Scholar

    [41]

    冯嘉恒, 唐立丹, 刘邦武, 夏洋, 王冰 2013 62 117302Google Scholar

    Feng J H, Tang L D, Liu B W, Xia Y, Wang B 2013 Acta Phys. Sin. 62 117302Google Scholar

    [42]

    Motamedi P, Cadien K 2014 Appl. Surf. Sci. 315 104Google Scholar

    [43]

    Alevli M, Haider A, Kizir S, Leghari S A, Biyikli N 2016 J. Vac. Sci. Technol. A 34 01A137Google Scholar

    [44]

    Wang Q, Cheng X H, Zheng L, Shen L Y, Li J L, Zhang D L, Qian R, Yu Y H 2017 RSC Adv. 7 11745Google Scholar

    [45]

    Qu L H, Peng X G 2002 J. Am. Chem. Soc. 124 2049Google Scholar

    [46]

    Ren F M, Li S J, He C L 2015 Sci. China Mater. 58 490Google Scholar

  • [1] Juan Ting, Xing Jia-He, Zeng Fan-Cong, Zheng Xin, Xu Lin. Performance of perovskite solar cells based on SnO2:DPEPO hybrid electron transport layer. Acta Physica Sinica, 2024, 73(19): 198401. doi: 10.7498/aps.73.20240827
    [2] Zhang Ao, Zhang Chun-Xiu, Zhang Chun-Mei, Tian Yi-Min, Yan Jun, Meng Tao. Effects of CH3NH3 polymer formation on performance of organic-inorganic hybrid perovskite solar cell. Acta Physica Sinica, 2021, 70(16): 168801. doi: 10.7498/aps.70.20210353
    [3] Li Jia-Sen, Liang Chun-Jun, Ji Chao, Gong Hong-Kang, Song Qi, Zhang Hui-Min, Liu Ning. Improvement in performance of carbon-based perovskite solar cells by adding 1, 8-diiodooctane into hole transport layer 3-hexylthiophene. Acta Physica Sinica, 2021, 70(19): 198403. doi: 10.7498/aps.70.20210586
    [4] Fu Peng-Fei, Yu Dan-Ni, Peng Zi-Jian, Gong Jin-Kang, Ning Zhi-Jun. Perovskite solar cells passivated by distorted two-dimensional structure. Acta Physica Sinica, 2019, 68(15): 158802. doi: 10.7498/aps.68.20190306
    [5] Xia Jun-Min, Liang Chao, Xing Gui-Chuan. Inkjet printed perovskite solar cells: progress and prospects. Acta Physica Sinica, 2019, 68(15): 158807. doi: 10.7498/aps.68.20190302
    [6] Yuan Huai-Liang, Li Jun-Peng, Wang Ming-Kui. Recent progress in research on solid organic-inorganic hybrid solar cells. Acta Physica Sinica, 2015, 64(3): 038405. doi: 10.7498/aps.64.038405
    [7] Ke Shao-Ying, Wang Chong, Pan Tao, He Peng, Yang Jie, Yang Yu. Optimization design of hydrogenated amorphous silicon germanium thin film solar cell with graded band gap profile. Acta Physica Sinica, 2014, 63(2): 028802. doi: 10.7498/aps.63.028802
    [8] Ding Mei-Bin, Lou Chao-Gang, Wang Qi-Long, Sun Qiang. Influence of quantum wells on the quantum efficiency of GaAs solar cells. Acta Physica Sinica, 2014, 63(19): 198502. doi: 10.7498/aps.63.198502
    [9] Wang Hai-Xiao, Zheng Xin-He, Wu Yuan-Yuan, Gan Xing-Yuan, Wang Nai-Ming, Yang Hui. Well layer design for 1eV absorption band edge of GaInAs/GaNAs super-lattice solar cell. Acta Physica Sinica, 2013, 62(21): 218801. doi: 10.7498/aps.62.218801
    [10] Chen Xiao-Bo, Yang Guo-Jian, Li Song, Sawanobori N., Xu Yi-Zhuang, Chen Xiao-Duan, Zhou Gu. First-order and second-order infrared quantum cutting of Ho3+ Yb3+ doped oxyfluoride vitroceramics. Acta Physica Sinica, 2012, 61(22): 227803. doi: 10.7498/aps.61.227803
    [11] Du Ling-Xiao, Hu Lian, Zhang Bing-Po, Cai Xi-Kun, Lou Teng-Gang, Wu Hui-Zhen. Photoluminescence enhancement of colloidal quantum dots embedded in a microcavity. Acta Physica Sinica, 2011, 60(11): 117803. doi: 10.7498/aps.60.117803
    [12] Chen Xiao-Bo, Yang Guo-Jian, Zhang Chun-Lin, Li Yong-Liang, Liao Hong-Bo, Zhang Yun-Zhi, Chen Luan, Wang Ya-Fei. Infrared quantum-cutting analysis of Er0.3Gd0.7VO4 crystal for solar cell application. Acta Physica Sinica, 2010, 59(11): 8191-8199. doi: 10.7498/aps.59.8191
    [13] Zhu Bao-Hua, Wang Fang-Fang, Zhang Kun, Ma Guo-Hong, Gu Yu-Zong, Guo Li-Jun, Qian Shi-Xiong. Linear and nonlinear optical properties of CdSe quantumn dots. Acta Physica Sinica, 2008, 57(10): 6557-6564. doi: 10.7498/aps.57.6557
    [14] Zhou Mei, Zuo Shu-Hua, Zhao De-Gang. A new Schottky barrier structure of GaN-based ultraviolet photodetector. Acta Physica Sinica, 2007, 56(9): 5513-5517. doi: 10.7498/aps.56.5513
    [15] Xu Ying, Diao Hong-Wei, Zhang Shi-Bin, Li Xu-Dong, Zeng Xiang-Bo, Wang Wen-Jing, Liao Xian-Bo. Deposition of p-type nc-SiC:H thin films with subtle carbon incorporation for applications in p-i-n solar cells. Acta Physica Sinica, 2007, 56(5): 2915-2919. doi: 10.7498/aps.56.2915
    [16] Xie Zi-Li, Zhang Rong, Xiu Xiang-Qian, Han Ping, Liu Bin, Chen Lin, Yu Hui-Qiang, Jiang Ruo-Lian, Shi Yi, Zheng You-Dou. MOCVD growth and characteristics of high quality AlGaN used in the DBR structure of ultraviolet detector. Acta Physica Sinica, 2007, 56(11): 6717-6721. doi: 10.7498/aps.56.6717
    [17] You Da, Xu Jin-Tong, Tang Ying-Wen, He Zheng, Xu Yun-Hua, Gong Hai-Mei. Research of two-dimensional hole gas in p-GaN/Al0.35Ga0.65N/GaN strained quantum-well. Acta Physica Sinica, 2006, 55(12): 6600-6605. doi: 10.7498/aps.55.6600
    [18] Hao Hui-Ying, Kong Guang-Lin, Zeng Xiang-Bo, Xu Ying, Diao Hong-Wei, Liao Xian-Bo. Transition films from amporphous to microcrystalline silicon and solar cells. Acta Physica Sinica, 2005, 54(7): 3327-3331. doi: 10.7498/aps.54.3327
    [19] Jin Hua, Zhang Li-Gong, Zheng Zhu-Hong, Kong Xiang-Gui, An Li-Nan, Shen De-Zhen. Exciton tunnelling in ZnCdSe quantum well/CdSe quantum dots. Acta Physica Sinica, 2004, 53(9): 3211-3214. doi: 10.7498/aps.53.3211
    [20] Li Pei-Xian, Hao Yue, Fan Long, Zhang Jin-Cheng, Zhang Jin-Feng, Zhang Xiao-Ju. AlGaN/GaN heterojunction wavefunction half analytic model based on quantum distu rbance. Acta Physica Sinica, 2003, 52(12): 2985-2988. doi: 10.7498/aps.52.2985
Metrics
  • Abstract views:  3178
  • PDF Downloads:  56
  • Cited By: 0
Publishing process
  • Received Date:  29 January 2023
  • Accepted Date:  28 April 2023
  • Available Online:  04 May 2023
  • Published Online:  05 July 2023

/

返回文章
返回
Baidu
map