-
The technology of space-based wireless power transfer presents a potential solution for supplying energy to spacecraft. However, this method transmits energy through high-power electromagnetic pulses, which may pose a potential threat to gallium arsenide (GaAs) solar cells. Currently, the damage mechanisms affecting solar cells in these conditions remain unclear. To address this issue, this study investigates the thermo-electrical coupled damage mechanism of single-junction GaAs solar cells using a comprehensive multiphysics simulation model. The simulations analyze the damage characteristics of the solar cells under varying voltage and frequency inputs. Furthermore, this work investigates the relationship between burnout time and both input voltage and frequency, while also elucidating the differences in damage mechanisms observed under different frequencies. Results indicate that burnout predominantly occurs at the cathode electrode contacts due to high current density and contact resistance. Additionally, the PN junction and the anode contact experience significant temperature elevations, potentially impacting the cell performance. By enhancing the comprehension of how high-power electromagnetic pulses damage space solar cells, this study will support the design of electromagnetic protection systems for spacecraft power architectures.
-
Keywords:
- Electromagnetic Pulses /
- Gallium Arsenide /
- Solar Cells /
- Thermal Damage
-
[1] Liu Y, Cheng W, Sun B, Wang W 2016 Space Electronic Technology 13 44 (in Chinese) [刘岩, 程伟, 孙犇, 王玮 2016 空间电子技术 13 44]
[2] Yang Y, Zhang Y, Duan B, Wang D, Li X 2016 Acta Astronautica 121 51
[3] Li J, Dong S W, Li Y, Wang Y, Chen W W 2021 Space Electronic Technology 15 8 (in Chinese) [李军, 董士伟, 李洋, 王颖, 陈伟伟 2021 空间电子技术 15 8]
[4] Yan Y Y 2019 Ph.D Dissertation (Nanjing: Nanjing University of Aeronautics and Astronautics) (in Chinese) [颜媛媛 2019 硕士学位论文 (南京: 南京航空航天大学)]
[5] Barthel A, Sato S, Sayre L, Li J, Nakamura T, Ohshima T, Imaizumi M, Hirst L C 2024 Journal of Applied Physics 135 224505
[6] Rahman T, Mansur A, Hossain L M, Rahman M, Ashique R, Houran M, Elavarasan R, Hossain E 2023 Energies 16 3706
[7] Ju P K 2017 Ph.D Dissertation (Nanjing: Nanjing University of Science and Technology) (in Chinese) [居培凯 2017 硕士学位论文 (南京: 南京理工大学)]
[8] Wang H X 2022 Ph.D Dissertation (Xian: Xidian University) (in Chinese) [王瀚翔 2022 硕士学位论文 (西安:西安电子科技大学)]
[9] Wang H, Chai C, Liu Y, Wu H, Zhang W, Li F, Yang Y 2021 Ieice Electron. Expr. 18 20210020
[10] Meng X Y 2023 Ph.D Dissertation (Xian: Xidian University) (in Chinese) [孟祥瑞 2023 硕士学位论文 (西安:西安电子科技大学)]
[11] Meng X, Chai C, Li F, Sun Y, Yang Y 2022 J. Semicond. 43 112701
[12] Fan Y H 2022 Ph.D Dissertation (Xian: Xidian University) (in Chinese) [樊晖煜 2022 硕士学位论文 (西安: 西安电子科技大学)]
[13] Zhang H B 2024 Ph.D Dissertation (Xian: Xidian University) (in Chinese) [张好彬 2024 硕士学位论文 (西安: 西安电子科技大学)]
[14] He J, Xia J B (eds.) 2017 Semiconductor Science and Technology: 2nd Edition (Beijing: Science Press) p110 (in Chinese) [何杰,夏建白主编 2017 半导体科学与技术 第2版 (北京:科学出版社) 第110页]
[15] Liu E K, Zhu B S, Luo J S 2017 Semiconductor Physics: 7th Edition (Beijing: Publishing House of Electronics Industry) p712 (in Chinese) [刘恩科,朱秉升,罗晋生编 2017 半导体物理学 第7版 (北京:电子工业出版社) 第712页]
[16] Ürmös A, Farkas Z, Dobos L, Nagy S, Nemcsics Á 2018 Acta Polytech. Hung. 15 99
[17] Chen X Y 2012 Ph.D Dissertation (Taoyuan: Chung Yuan Christian University) (in Chinese) [陳信佑 2012 博士学位论文 (桃园:中原大學)]
[18] Zhang C F, Zhang J C, Ma X H, Feng Q 2015 Semiconductor Photovoltaic Devices (Xian: Xidian University Press) p102 (in Chinese) [张春福,张进成,马晓华,冯倩编 2015 半导体光伏器件 (西安:西安电子科技大学出版社) 第102页]
[19] SPS:Solar Power Satellite, Sasaki Susumu https://spacedream.sakura.ne.jp/
[20] Tao W Q 2019 Heat Transfer: Fifth Edition (Beijing: Higher Education Press) p118 (in Chinese) [陶文铨 2019 传热学:第五版 (北京:高等教育出版社) 第118页]
[21] SPS20.pdf [2024-7]
[22] Wunsch D C, Bell R R 1968 IEEE Trans. Nucl. Sci. 15 244
Metrics
- Abstract views: 127
- PDF Downloads: 2
- Cited By: 0