搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铁酸铋薄膜光电流的磁场调制研究

霍冠忠 苏超 王可 叶晴莹 庄彬 陈水源 黄志高

引用本文:
Citation:

铁酸铋薄膜光电流的磁场调制研究

霍冠忠, 苏超, 王可, 叶晴莹, 庄彬, 陈水源, 黄志高

Magnetic field modulation of photocurrent in BiFeO3 film

Huo Guan-Zhong, Su Chao, Wang Ke, Ye Qing-Ying, Zhuang Bin, Chen Shui-Yuan, Huang Zhi-Gao
PDF
HTML
导出引用
  • BiFeO3作为一种具有体光伏效应的室温多铁材料, 是近年来多功能材料领域的研究热点. 其中磁、光、电等多种性能之间耦合作用的共存带来了丰富而复杂的物理内涵. 利用脉冲激光沉积在导电玻璃(SnO2:F, FTO)衬底上沉积了BiFeO3薄膜, 实验结果表明, 该薄膜具有良好的铁磁和铁电性能, 并通过磁场实现了对薄膜光电性能的调控. 在标准太阳光照的同时施加1.3 kOe (1 Oe = 103/(4π) A/m)磁场下, 磁-光电流变化率达到232.7%. BiFeO3薄膜中的磁-光电流效应来自于光磁电阻效应, 即光生电子在磁场作用下成为自旋光电子, 在材料导带运动过程中受到自旋相关散射而具有光磁电阻效应; 此外, 磁场作用使这些自旋光电子受到的畴壁散射减弱也进一步增强了磁光电流效应. 本文为磁场、光场调控多铁性薄膜的磁、光、电等物理特性提供了参考, 为多功能光电材料领域的器件研究与应用提供了基础.
    BiFeO3 (BFO) is a kind of room temperature multiferroic material with bulk photovoltaic effect, and it has been a research hotspot in the field of multifunctional materials in recent years. The coexistence of the coupling among magnetic, optical, electrical properties brings rich and complex physical connotations. In this work, BiFeO3 thin film is deposited on FTO substrate by pulsed laser deposition, and the solar cell structure with BiFeO3 film used as light absorption layer and Au film serving as electrode is constructed. X-ray diffraction and Raman spectra indicate that the BFO film grown on FTO substrate has a pure phase structure. The experimental results of physical properties indicate that the BFO film possesses good ferromagnetic and ferroelectric properties and obvious photoelectric effect. According to the hysteresis loop, the remanence (Mr) of the sample is 0.8 emu/cm3, and the coercivity (Hc) is 200 Oe at 300 K. In terms of ferroelectricity, the saturation polarization intensity of the sample can reach 0.997 μC/cm2, the residual polarization intensity is 0.337 μC/cm2, and the coercive electric field is 12.45 kV/cm. The above results show that the BFO film has good multiferroic properties. Under solar illumination conditions, the photocurrent density up to 208 mA/cm2 is obtained when a bias voltage 1 V is applied. More importantly, magneto-photocurrent (MPC) effect is found in the BFO film. No matter whether the magnetic field starts to increase from the positive direction or the negative direction, the MPC usually changes with the magnitude of magnetization. When a 1.3 kOe magnetic field is applied, the magneto-photocurrent change rate up to 232.7% is observed under standard solar illumination condition. The results show that the photocurrent of BFO films is greatly improved by a positive magnetic field and negative magnetic field. This magneto-photocurrent effect in BFO thin film comes from the photo-magnetoresistance effect, that is, the photogenerated electrons become spin photoelectrons under the action of an external magnetic field and receive spin-dependent scattering during moving in the conductive band of the material, thus producing the photo-magnetoresistance effect. In addition, the magneto-photocurrent effect is further enhanced by weakening the domain wall scattering of the spin electrons by the magnetic field. This work provides a reference for the modulation effect of magnetic field and light field on the magnetic, optical and electrical properties in multiferroics, and presents a foundation for the research and application of devices in the field of multifunctional optoelectronic materials.
      通信作者: 陈水源, sychen@fjnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11074031)、国家重点研发计划(批准号: 2017YFE0301401)和福建省自然科学基金(批准号: 2020J01192, 2021J01191)资助的课题.
      Corresponding author: Chen Shui-Yuan, sychen@fjnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11074031), the National Key R&D Program of China (Grant No. 2017YFE0301401), and the Natural Science Foundation of Fujian Province, China (Grant Nos. 2020J01192, 2021J01191).
    [1]

    Guo R, You L, Zhou Y, Shiuh L Z, Zou X, Chen L, Ramesh R, Wang J L 2013 Nat. Commun. 4 1990Google Scholar

    [2]

    Wei M C, Liu M F, Yang L, Xie B, Li X, Wang X Z, Cheng X Y, Zhu Y D, Li Z J, Su Y L, Li M Y, Hu Z Q, Liu J M 2020 Ceram. Int. 46 5126Google Scholar

    [3]

    Thakoor S 1992 Appl. Phys. Lett. 60 3319Google Scholar

    [4]

    张亚菊, 谢忠帅, 郑海务, 袁国亮 2020 69 127709Google Scholar

    Zhang Y J, Xie Z S, Zheng H W, Yuan G L 2020 Acta Phys. Sin. 69 127709Google Scholar

    [5]

    Wang J, Ma J, Yang Y B, Chen M F, Zhang J X, Ma J, Nan C W 2019 ACS Appl. Electron. Mater. 1 862Google Scholar

    [6]

    Li J K, Ge C, Jin K J, Du J Y, Yang J T, Lu H B, Yang G Z 2017 Appl. Phys. Lett. 110 142901Google Scholar

    [7]

    Wang X D, Wang P, Wang J L, Hu W D, Zhou X H, Guo N, Huang H, Sun S, Shen H, Lin T, Tang M H, Liao L, Jiang A Q, Sun J L, Meng X J, Chen X S, Lu W, Chu J H 2015 Adv. Mater. 27 6575Google Scholar

    [8]

    Wang P, Wang Y, Ye L, Wu M Z, Xie R Z, Wang X D, Chen X S, Fan Z Y, Wang J L, Hu W D 2018 Small 14 e1800492Google Scholar

    [9]

    Zhao Q L, He G P, Di J J, Song W L, Hou Z L, Tan P P, Wang D W, Cao M S 2017 ACS Appl. Mater. Interfaces 9 24696Google Scholar

    [10]

    Sujoy K G, Jinyoung K, Minsoo P K, Sangyun N, Jeonghoon C, Jae J K, Hyunhyub K 2022 ACS Nano 16 11415Google Scholar

    [11]

    Huangfu G, Xiao H, Guan L, Zhong H, Hu C, Shi Z, Guo Y 2020 ACS Appl. Mater. Interfaces 12 33950Google Scholar

    [12]

    Tan Z W, Hong L Q, Fan Z, Tian J J, Zhang L Y, Jiang Y, Hou Z P, Chen D Y, Qin M H, Zeng M, Gao J W, Lu X B, Zhou G F, Gao X S, Liu J M 2019 NPG Asia Mater. 11 20Google Scholar

    [13]

    Nechache R, Harnagea C, Li S, Cardenas L, Huang W, Chakrabartty J, Rosei F 2015 Nat. Photonics 9 61Google Scholar

    [14]

    Grinberg I, West D V, Torres M, Gou G Y, Stein D M, Wu L Y, Chen G N, Gallo E M, Akbashev A R, Davies P K, Spanier J E, Rappe A M 2013 Nature 503 509Google Scholar

    [15]

    Chakrabartty J, Harnagea C, Celikin M, Rosei F, Nechache R 2018 Nat. Photonics 12 271Google Scholar

    [16]

    Liu C C, Sun H Y, Ma C, Chen Z W, Luo Z, Su T S, Yin Y W, Li X G 2020 IEEE Electron Device Lett. 41 42Google Scholar

    [17]

    Liu Y, Yao Y, Dong S, Yang S, Li X 2012 Phys. Rev. B 86 075113Google Scholar

    [18]

    Fan Z, Yao K, Wang J 2014 Appl. Phys. Lett. 105 162903Google Scholar

    [19]

    Basu S R, Martin L W, Chu Y H, Gajek M, Ramesh R, Rai R C, Xu X, Musfeldt J L 2008 Appl. Phys. Lett. 92 091905Google Scholar

    [20]

    Ema K, Umeda K, Toda M, Yajima C, Arai Y, Kunugita H, Wolverson D, Davies J J 2006 Phys. Rev. B 73 241310Google Scholar

    [21]

    Hsiao Y C, Wu T, Li M, Hu B 2015 Adv. Mater. 27 2899Google Scholar

    [22]

    Pavliuk M V, Fernandes D L A, El-Zohry A M, Abdellah M, Nedelcu G, Kovalenko M V, Sa J 2016 Adv. Opt. Mater. 4 2004Google Scholar

    [23]

    Zhang C, Sun D, Sheng C X, Zhai Y X, Mielczarek K, Zakhidov A, Vardeny Z V 2015 Nat. Phys. 11 427Google Scholar

    [24]

    Even J, Pedesseau L, Jancu J M, Katan C 2014 Phys. Status Solidi-Rapid Res. Lett. 8 31Google Scholar

    [25]

    Pan R, Wang K, Li Y, Yu H, Li J, Xu L 2021 Adv. Electron. Mater. 7 2100026Google Scholar

    [26]

    Andy E 2019 Nature 570 429Google Scholar

    [27]

    Tomas L, Kevin A B, Rohit P, Michael D M 2018 Nat. Energy 3 828Google Scholar

    [28]

    Kevin A B, Axel F P, Zhengshan J Y, Mathieu B, Rongrong C, Jonathan P M, David P M, Robert L Z H, Colin D B, Tomas L, Ian M P, Maxmillian C M, Nicholas R, Rohit P, Sarah S, Duncan H, Wen M, Farhad M, Henry J S, Tonio B, Zachary C H, Stacey F B, Michael D M 2017 Nat. Energy 2 17009Google Scholar

    [29]

    Florent S, Jérémie W, Brett A K, Matthias B, Raphaël M, Bertrand P S, Loris B, Laura D, Juan J D L, Davide S, Gianluca C, Matthieu D, Mathieu B, Sylvain N, Quentin J, Bjoern N, Christophe B 2018 Nat. Mater. 17 820Google Scholar

    [30]

    Chen B, Yu Z S, Liu K, et al. 2019 Joule 3 177Google Scholar

    [31]

    Martin A G, Stephen P B 2017 Nat. Mater. 16 23Google Scholar

    [32]

    Pabitra K N, Suhas M, Henry J S, David C 2019 Nat. Rev. Mater. 4 269Google Scholar

    [33]

    Yuan Y B, Xiao Z G, Yang B, Huang J S 2014 J. Mater. Chem. A 2 6027Google Scholar

    [34]

    蔡田怡, 雎胜 2018 67 157801Google Scholar

    Cai T Y, Ju S 2018 Acta Phys. Sin. 67 157801Google Scholar

    [35]

    Yang S Y, Seidel J, Byrnes S J, Shafer P, Yang C H, Rossell M D, Yu P, Chu Y H, Scott J F, Ager III J W, Martin L W, Ramesh R 2010 Nat. Nanotechnol. 5 143Google Scholar

    [36]

    Guo R, You L, Lin W N, et al. 2020 Nat. Commun. 11 2571Google Scholar

    [37]

    Jhonata R V, Gislayne R A S, Márcio R M 2022 Int J Appl Ceram Technol. 19 1779Google Scholar

    [38]

    Ma G, Jiang W, Sun W, Yan Z, Sun B, Li S, Zhang M, Wang X, Gao A, Dai J, Liu Z, Li P, Tang W 2021 Phys. Scr. 96 125823Google Scholar

    [39]

    Pal S, Sarath N V, Priya K S, Murugavel P 2022 J. Phys. D Appl. Phys. 55 283001Google Scholar

    [40]

    Seung M L, Ahra C, Yong S C 2016 RSC Adv. 6 16602Google Scholar

    [41]

    Jin C, Li X W, Han W Q, et al. 2021 ACS Appl. Mater. Interfaces 13 41315Google Scholar

    [42]

    Guo D, Liu H, Li P, Wu Z, Wang S, Cui C, Li C, Tang W 2017 ACS Appl. Mater. Interfaces 9 1619Google Scholar

    [43]

    Xu H, Lin Y, Harumoto T, Shi J, Nan C 2017 ACS Appl. Mater. Interfaces 9 30127Google Scholar

    [44]

    Lu W, Fan Z, Yang Y, Ma J, Lai J, Song X, Zhuo X, Xu Z, Liu J, Hu X, Zhuo S, Xiu F, Cheng J, Sun D 2022 Nat. Commun. 13 1623Google Scholar

    [45]

    Yao Q, Liu W, Zhang R, Ma Y, Wang Y, Hu R, Mao W, Pu Y, Li X 2019 ACS Sustainable Chem. Eng. 7 12439Google Scholar

    [46]

    Sun D, Ehrenfreund E, Vardeny Z V 2014 Chem. Commun. 50 1781Google Scholar

    [47]

    Sagar R U R, Zhang X, Wang J, Xiong C 2014 J. Appl. Phys. 115 123708Google Scholar

    [48]

    Gautam B R, Nguyen T D, Ehrenfreund E, Vardeny Z V 2012 Phys. Rev. B 85 205207Google Scholar

    [49]

    Wang J, Chepelianskii A, Gao F, Greenham N C 2012 Nat. Commun. 3 1191Google Scholar

    [50]

    Hu B, Yan L, Shao M 2009 Adv. Mater. 21 1500Google Scholar

    [51]

    Devir-Wolfman A H, Khachatryan B, Gautam B R, Tzabary L, Keren A, Tessler N, Vardeny Z V, Ehrenfreund E 2014 Nat. Commun. 5 4529Google Scholar

    [52]

    Muneeswaran M, Giridharan N V 2014 J. Appl. Phys. 115 214109Google Scholar

    [53]

    Sharma G N, Dutta S, Singh S K, Chatterjee R 2016 Mater. Res. Express 3 106202Google Scholar

    [54]

    Wang J J, Hu J M, Yang T N, Feng M, Zhang J X, Chen L Q, Nan C W 2014 Sci. Rep. 4 4553Google Scholar

    [55]

    Wei S, Wenxuan W, Dong C, Zhenxiang C, Tingting J, Yuanxu W 2019 J. Phys. Chem. C 123 16393Google Scholar

    [56]

    Tan K H, Chen Y W, Van Nguyen C, et al. 2019 ACS Appl. Mater. Interfaces 11 1655Google Scholar

    [57]

    Lu Y, Fan Z, Liang F, Yang Z, Liang Z T, Zeyu Z, Guohong M, Daniel S, Andrivo R, Le W, Lei C, Andrew M R, Junling W 2018 Sci. Adv. 4 eaat3438Google Scholar

    [58]

    翟宏如, 都有为, 韩秀峰, 刘俊明, 王克锋, 赵建华, 邓加军, 郑厚植, 邢定钰, 夏钶, 周仕明, 苏刚, 蔡建旺 2013 自旋电子学 (北京: 科学出版社) 第459, 460页

    Zhai H R, Du Y Y, Han X F, Liu J M, Wang K F, Zhao J H, Deng J J, Zheng H Z, Xing D Y, Xia K, Zhou S M, Su G, Cai J W 2013 Spintronics (Beijing: Science Press) pp459, 460 (in Chinese)

  • 图 1  BFO薄膜在300 K温度下的(a) XRD图谱和(b)拉曼光谱

    Fig. 1.  The XRD pattern (a) and Raman spectrum (b) of the BFO thin film at 300 K.

    图 2  BFO薄膜在300 K温度下的(a)磁滞回线图和(b)电滞回线图

    Fig. 2.  The M-H hysteresis loop (a) and the P-E hysteresis loops (b) of the BFO film at 300 K.

    图 3  室温下样品J-V曲线在无磁场黑暗条件下及光照下随外磁场增强的响应情况

    Fig. 3.  The J-V curves of the sample at room temperature under dark conditions without magnetic field and under light with the increase of external magnetic field.

    图 4  在偏压分别为(a), (c) 0 V和(b), (d) 1 V时, 室温下样品的(a), (b)光电流随磁场变化曲线以及(c), (d) $ {D}_{{\rm{M}}{\rm{P}}{\rm{C}},{\rm{V}}} $值随磁场变化的响应曲线

    Fig. 4.  Change curves of photocurrent (a), (b) and $ {D}_{{\rm{M}}{\rm{P}}{\rm{C}},{\rm{V}}} $(c), (d) with the alteration of magnetic field for the sample at room temperature with the bias of (a), (c) 0 V and (b), (d) 1 V.

    图 5  (a) Fe3+简并轨道能量、自旋光电子与电子能带态密度示意图; (b)外磁场作用下Fe3+能带移动示意图

    Fig. 5.  (a) Schematic diagram of the Fe3+ degenerate orbital energy, spin photoelectron and electron band density of state; (b) schematic diagram of the Fe3+ band movement under the external magnetic field.

    Baidu
  • [1]

    Guo R, You L, Zhou Y, Shiuh L Z, Zou X, Chen L, Ramesh R, Wang J L 2013 Nat. Commun. 4 1990Google Scholar

    [2]

    Wei M C, Liu M F, Yang L, Xie B, Li X, Wang X Z, Cheng X Y, Zhu Y D, Li Z J, Su Y L, Li M Y, Hu Z Q, Liu J M 2020 Ceram. Int. 46 5126Google Scholar

    [3]

    Thakoor S 1992 Appl. Phys. Lett. 60 3319Google Scholar

    [4]

    张亚菊, 谢忠帅, 郑海务, 袁国亮 2020 69 127709Google Scholar

    Zhang Y J, Xie Z S, Zheng H W, Yuan G L 2020 Acta Phys. Sin. 69 127709Google Scholar

    [5]

    Wang J, Ma J, Yang Y B, Chen M F, Zhang J X, Ma J, Nan C W 2019 ACS Appl. Electron. Mater. 1 862Google Scholar

    [6]

    Li J K, Ge C, Jin K J, Du J Y, Yang J T, Lu H B, Yang G Z 2017 Appl. Phys. Lett. 110 142901Google Scholar

    [7]

    Wang X D, Wang P, Wang J L, Hu W D, Zhou X H, Guo N, Huang H, Sun S, Shen H, Lin T, Tang M H, Liao L, Jiang A Q, Sun J L, Meng X J, Chen X S, Lu W, Chu J H 2015 Adv. Mater. 27 6575Google Scholar

    [8]

    Wang P, Wang Y, Ye L, Wu M Z, Xie R Z, Wang X D, Chen X S, Fan Z Y, Wang J L, Hu W D 2018 Small 14 e1800492Google Scholar

    [9]

    Zhao Q L, He G P, Di J J, Song W L, Hou Z L, Tan P P, Wang D W, Cao M S 2017 ACS Appl. Mater. Interfaces 9 24696Google Scholar

    [10]

    Sujoy K G, Jinyoung K, Minsoo P K, Sangyun N, Jeonghoon C, Jae J K, Hyunhyub K 2022 ACS Nano 16 11415Google Scholar

    [11]

    Huangfu G, Xiao H, Guan L, Zhong H, Hu C, Shi Z, Guo Y 2020 ACS Appl. Mater. Interfaces 12 33950Google Scholar

    [12]

    Tan Z W, Hong L Q, Fan Z, Tian J J, Zhang L Y, Jiang Y, Hou Z P, Chen D Y, Qin M H, Zeng M, Gao J W, Lu X B, Zhou G F, Gao X S, Liu J M 2019 NPG Asia Mater. 11 20Google Scholar

    [13]

    Nechache R, Harnagea C, Li S, Cardenas L, Huang W, Chakrabartty J, Rosei F 2015 Nat. Photonics 9 61Google Scholar

    [14]

    Grinberg I, West D V, Torres M, Gou G Y, Stein D M, Wu L Y, Chen G N, Gallo E M, Akbashev A R, Davies P K, Spanier J E, Rappe A M 2013 Nature 503 509Google Scholar

    [15]

    Chakrabartty J, Harnagea C, Celikin M, Rosei F, Nechache R 2018 Nat. Photonics 12 271Google Scholar

    [16]

    Liu C C, Sun H Y, Ma C, Chen Z W, Luo Z, Su T S, Yin Y W, Li X G 2020 IEEE Electron Device Lett. 41 42Google Scholar

    [17]

    Liu Y, Yao Y, Dong S, Yang S, Li X 2012 Phys. Rev. B 86 075113Google Scholar

    [18]

    Fan Z, Yao K, Wang J 2014 Appl. Phys. Lett. 105 162903Google Scholar

    [19]

    Basu S R, Martin L W, Chu Y H, Gajek M, Ramesh R, Rai R C, Xu X, Musfeldt J L 2008 Appl. Phys. Lett. 92 091905Google Scholar

    [20]

    Ema K, Umeda K, Toda M, Yajima C, Arai Y, Kunugita H, Wolverson D, Davies J J 2006 Phys. Rev. B 73 241310Google Scholar

    [21]

    Hsiao Y C, Wu T, Li M, Hu B 2015 Adv. Mater. 27 2899Google Scholar

    [22]

    Pavliuk M V, Fernandes D L A, El-Zohry A M, Abdellah M, Nedelcu G, Kovalenko M V, Sa J 2016 Adv. Opt. Mater. 4 2004Google Scholar

    [23]

    Zhang C, Sun D, Sheng C X, Zhai Y X, Mielczarek K, Zakhidov A, Vardeny Z V 2015 Nat. Phys. 11 427Google Scholar

    [24]

    Even J, Pedesseau L, Jancu J M, Katan C 2014 Phys. Status Solidi-Rapid Res. Lett. 8 31Google Scholar

    [25]

    Pan R, Wang K, Li Y, Yu H, Li J, Xu L 2021 Adv. Electron. Mater. 7 2100026Google Scholar

    [26]

    Andy E 2019 Nature 570 429Google Scholar

    [27]

    Tomas L, Kevin A B, Rohit P, Michael D M 2018 Nat. Energy 3 828Google Scholar

    [28]

    Kevin A B, Axel F P, Zhengshan J Y, Mathieu B, Rongrong C, Jonathan P M, David P M, Robert L Z H, Colin D B, Tomas L, Ian M P, Maxmillian C M, Nicholas R, Rohit P, Sarah S, Duncan H, Wen M, Farhad M, Henry J S, Tonio B, Zachary C H, Stacey F B, Michael D M 2017 Nat. Energy 2 17009Google Scholar

    [29]

    Florent S, Jérémie W, Brett A K, Matthias B, Raphaël M, Bertrand P S, Loris B, Laura D, Juan J D L, Davide S, Gianluca C, Matthieu D, Mathieu B, Sylvain N, Quentin J, Bjoern N, Christophe B 2018 Nat. Mater. 17 820Google Scholar

    [30]

    Chen B, Yu Z S, Liu K, et al. 2019 Joule 3 177Google Scholar

    [31]

    Martin A G, Stephen P B 2017 Nat. Mater. 16 23Google Scholar

    [32]

    Pabitra K N, Suhas M, Henry J S, David C 2019 Nat. Rev. Mater. 4 269Google Scholar

    [33]

    Yuan Y B, Xiao Z G, Yang B, Huang J S 2014 J. Mater. Chem. A 2 6027Google Scholar

    [34]

    蔡田怡, 雎胜 2018 67 157801Google Scholar

    Cai T Y, Ju S 2018 Acta Phys. Sin. 67 157801Google Scholar

    [35]

    Yang S Y, Seidel J, Byrnes S J, Shafer P, Yang C H, Rossell M D, Yu P, Chu Y H, Scott J F, Ager III J W, Martin L W, Ramesh R 2010 Nat. Nanotechnol. 5 143Google Scholar

    [36]

    Guo R, You L, Lin W N, et al. 2020 Nat. Commun. 11 2571Google Scholar

    [37]

    Jhonata R V, Gislayne R A S, Márcio R M 2022 Int J Appl Ceram Technol. 19 1779Google Scholar

    [38]

    Ma G, Jiang W, Sun W, Yan Z, Sun B, Li S, Zhang M, Wang X, Gao A, Dai J, Liu Z, Li P, Tang W 2021 Phys. Scr. 96 125823Google Scholar

    [39]

    Pal S, Sarath N V, Priya K S, Murugavel P 2022 J. Phys. D Appl. Phys. 55 283001Google Scholar

    [40]

    Seung M L, Ahra C, Yong S C 2016 RSC Adv. 6 16602Google Scholar

    [41]

    Jin C, Li X W, Han W Q, et al. 2021 ACS Appl. Mater. Interfaces 13 41315Google Scholar

    [42]

    Guo D, Liu H, Li P, Wu Z, Wang S, Cui C, Li C, Tang W 2017 ACS Appl. Mater. Interfaces 9 1619Google Scholar

    [43]

    Xu H, Lin Y, Harumoto T, Shi J, Nan C 2017 ACS Appl. Mater. Interfaces 9 30127Google Scholar

    [44]

    Lu W, Fan Z, Yang Y, Ma J, Lai J, Song X, Zhuo X, Xu Z, Liu J, Hu X, Zhuo S, Xiu F, Cheng J, Sun D 2022 Nat. Commun. 13 1623Google Scholar

    [45]

    Yao Q, Liu W, Zhang R, Ma Y, Wang Y, Hu R, Mao W, Pu Y, Li X 2019 ACS Sustainable Chem. Eng. 7 12439Google Scholar

    [46]

    Sun D, Ehrenfreund E, Vardeny Z V 2014 Chem. Commun. 50 1781Google Scholar

    [47]

    Sagar R U R, Zhang X, Wang J, Xiong C 2014 J. Appl. Phys. 115 123708Google Scholar

    [48]

    Gautam B R, Nguyen T D, Ehrenfreund E, Vardeny Z V 2012 Phys. Rev. B 85 205207Google Scholar

    [49]

    Wang J, Chepelianskii A, Gao F, Greenham N C 2012 Nat. Commun. 3 1191Google Scholar

    [50]

    Hu B, Yan L, Shao M 2009 Adv. Mater. 21 1500Google Scholar

    [51]

    Devir-Wolfman A H, Khachatryan B, Gautam B R, Tzabary L, Keren A, Tessler N, Vardeny Z V, Ehrenfreund E 2014 Nat. Commun. 5 4529Google Scholar

    [52]

    Muneeswaran M, Giridharan N V 2014 J. Appl. Phys. 115 214109Google Scholar

    [53]

    Sharma G N, Dutta S, Singh S K, Chatterjee R 2016 Mater. Res. Express 3 106202Google Scholar

    [54]

    Wang J J, Hu J M, Yang T N, Feng M, Zhang J X, Chen L Q, Nan C W 2014 Sci. Rep. 4 4553Google Scholar

    [55]

    Wei S, Wenxuan W, Dong C, Zhenxiang C, Tingting J, Yuanxu W 2019 J. Phys. Chem. C 123 16393Google Scholar

    [56]

    Tan K H, Chen Y W, Van Nguyen C, et al. 2019 ACS Appl. Mater. Interfaces 11 1655Google Scholar

    [57]

    Lu Y, Fan Z, Liang F, Yang Z, Liang Z T, Zeyu Z, Guohong M, Daniel S, Andrivo R, Le W, Lei C, Andrew M R, Junling W 2018 Sci. Adv. 4 eaat3438Google Scholar

    [58]

    翟宏如, 都有为, 韩秀峰, 刘俊明, 王克锋, 赵建华, 邓加军, 郑厚植, 邢定钰, 夏钶, 周仕明, 苏刚, 蔡建旺 2013 自旋电子学 (北京: 科学出版社) 第459, 460页

    Zhai H R, Du Y Y, Han X F, Liu J M, Wang K F, Zhao J H, Deng J J, Zheng H Z, Xing D Y, Xia K, Zhou S M, Su G, Cai J W 2013 Spintronics (Beijing: Science Press) pp459, 460 (in Chinese)

  • [1] 赵新丽, 马国亮, 马余刚. 中高能重离子碰撞中的电磁场效应和手征反常现象.  , 2023, 72(11): 112502. doi: 10.7498/aps.72.20230245
    [2] 刘川川, 郝飞翔, 殷月伟, 李晓光. Pt/BiFeO3/Nb:SrTiO3异质结的光伏效应和光调控整流特性.  , 2020, 69(12): 127301. doi: 10.7498/aps.69.20200280
    [3] 张亚菊, 谢忠帅, 郑海务, 袁国亮. Au-BiFeO3纳米复合薄膜的电学和光伏性能优化.  , 2020, 69(12): 127709. doi: 10.7498/aps.69.20200309
    [4] 朱立峰, 潘文远, 谢燕, 张波萍, 尹阳, 赵高磊. 缺陷离子调控对BiFeO3-BaTiO3基钙钛矿材料的铁电光伏特性影响.  , 2019, 68(21): 217701. doi: 10.7498/aps.68.20190996
    [5] 蔡田怡, 雎胜. 铁电体的光伏效应.  , 2018, 67(15): 157801. doi: 10.7498/aps.67.20180979
    [6] 杨双波. 温度与外磁场对Si均匀掺杂的GaAs量子阱电子态结构的影响.  , 2014, 63(5): 057301. doi: 10.7498/aps.63.057301
    [7] 唐田田, 张朝民, 张敏. 氢负离子在磁场和金属面附近电子通量分布的研究.  , 2013, 62(12): 123201. doi: 10.7498/aps.62.123201
    [8] 张歆, 章晓中, 谭新玉, 于奕, 万蔡华. Al2O3增强的Co2-C98/Al2O3/Si异质结的光伏效应.  , 2012, 61(14): 147303. doi: 10.7498/aps.61.147303
    [9] 唐田田, 王德华, 黄凯云, 王姗姗. 氢负离子在磁场和电介质表面附近光剥离的研究.  , 2012, 61(6): 063202. doi: 10.7498/aps.61.063202
    [10] 吴利华, 章晓中, 于奕, 万蔡华, 谭新玉. a-C: Fe/AlOx/Si基异质结的光伏效应.  , 2011, 60(3): 037807. doi: 10.7498/aps.60.037807
    [11] 蔡利兵, 王建国. 微波磁场和斜入射对介质表面次级电子倍增的影响.  , 2010, 59(2): 1143-1147. doi: 10.7498/aps.59.1143
    [12] 张雯. 磁场微重力效应的研究.  , 2009, 58(4): 2405-2409. doi: 10.7498/aps.58.2405
    [13] 王新军, 王玲玲, 黄维清, 唐黎明, 陈克求. 磁场下含结构缺陷多组分超晶格中的局域电子态和电子输运.  , 2006, 55(7): 3649-3655. doi: 10.7498/aps.55.3649
    [14] 张助华, 郭万林, 郭宇锋. 轴向磁场对碳纳米管电子性质的影响.  , 2006, 55(12): 6526-6531. doi: 10.7498/aps.55.6526
    [15] 韩 逸, 班春燕, 巴启先, 王书晗, 崔建忠. 磁场对液态铝和固态铁界面微观组织的影响.  , 2005, 54(6): 2955-2960. doi: 10.7498/aps.54.2955
    [16] 黄维清, 陈克求, 帅志刚, 王玲玲, 胡望宇. 磁耦合效应对半无限超晶格中表面电子态的影响.  , 2004, 53(7): 2330-2335. doi: 10.7498/aps.53.2330
    [17] 侯春风, 李师群, 李斌, 孙秀冬. 有外加电场的光伏光折变晶体中的非相干耦合亮-暗屏蔽光伏孤子对.  , 2001, 50(9): 1709-1712. doi: 10.7498/aps.50.1709
    [18] 陈正林, 张杰. 对超热电子诱生的磁场分布的估算.  , 2001, 50(4): 735-740. doi: 10.7498/aps.50.735
    [19] 郭 永, 顾秉林, 川添良幸. 磁量子结构中二维自旋电子的隧穿输运.  , 2000, 49(9): 1814-1820. doi: 10.7498/aps.49.1814
    [20] 陈正林, 张 杰. 对超热电子诱生的磁场分布的估算.  , 2000, 49(11): 2180-2185. doi: 10.7498/aps.49.2180
计量
  • 文章访问数:  5571
  • PDF下载量:  136
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-27
  • 修回日期:  2023-01-09
  • 上网日期:  2023-03-06
  • 刊出日期:  2023-03-20

/

返回文章
返回
Baidu
map