搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

AlGaN合金的原子层沉积及其在量子点敏化太阳能电池的应用

刘恒 李晔 杜梦超 仇鹏 何荧峰 宋祎萌 卫会云 朱晓丽 田丰 彭铭曾 郑新和

引用本文:
Citation:

AlGaN合金的原子层沉积及其在量子点敏化太阳能电池的应用

刘恒, 李晔, 杜梦超, 仇鹏, 何荧峰, 宋祎萌, 卫会云, 朱晓丽, 田丰, 彭铭曾, 郑新和

Atomic layer deposition of AlGaN alloy and its application in quantum dot sensitized solar cells

Liu Heng, Li Ye, Du Meng-Chao, Qiu Peng, He Ying-Feng, Song Yi-Meng, Wei Hui-Yun, Zhu Xiao-Li, Tian Feng, Peng Ming-Zeng, Zheng Xin-He
PDF
HTML
导出引用
  • 本文探究了c面蓝宝石衬底上AlGaN三元合金的等离子增强原子层沉积生长, 同时结合量子点敏化太阳能电池的制备, 研究了AlGaN合金的作用. AlGaN三元合金在原子层沉积过程中, 薄膜与衬底的界面以及带隙都与Al组分有关. 高Al组分时, AlGaN合金薄膜与衬底之间有较好的界面, 然而Al组分降低时, 界面变得粗糙. 原子层沉积制备的AlGaN合金具有较高的带隙, 与薄膜内的氧含量有关. 随后, 将AlN/GaN循环比例为1∶1的AlGaN薄膜分别制备CdSe/AlGaN/ZnS和CdSe/ZnS/AlGaN结构电池并进行了量子点太阳能电池的制备和分析. 结果发现, AlGaN对量子点和TiO2有修饰钝化作用, 可以包裹和保护TiO2和CdSe量子点结构, 从而避免了光生载流子的复合. 这种修饰作用也体现在改善量子点太阳能电池的开路电压、短路电流、填充因子和光电转化效率方面, 尝试从原子层沉积制备的AlGaN薄膜在改变载流子传输方面进行讨论.
    The role of plasma-enhanced atomic layer deposition growth of AlGaN ternary alloys on c-planar sapphire substrates and the preparation of quantum dot-sensitized solar cells are explored in this work. The interface between the film and the substrate as well as the band gap of AlGaN ternary alloys during atomic layer deposition is dependent on Al component. At high Al fraction, there appears a good interface between the AlGaN alloy film and the substrate, however, the interface becomes rough when the Al fraction is reduced. The AlGaN alloy prepared by atomic layer deposition has a high band gap, which is related to the oxygen content within the film. Subsequently, CdSe/AlGaN/ZnS and CdSe/ZnS/AlGaN structured cells are prepared and analyzed for quantum dot solar cells from AlGaN films with an AlN/GaN cycle ratio of 1∶1. It is found that AlGaN can modify and passivate quantum dots and TiO2, which can wrap and protect the structure of TiO2 and CdSe quantum dot, thus avoiding the recombination of photo-generated carriers. This modification effect is also reflected in the improvement of open-circuit voltage, short-circuit current, filling factor and photovoltaic conversion efficiency of quantum dot solar cells. These factors are discussed in this work, trying to modify carrier transport characteristics of AlGaN films prepared by atomic layer deposition.
      通信作者: 郑新和, xinhezheng@ustb.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2018YFA0703700)、国家自然科学基金青年科学基金(批准号: 52002021)和中央高校基本科研业务费(批准号: FRF-IDRY-20-037)资助的课题.
      Corresponding author: Zheng Xin-He, xinhezheng@ustb.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2018YFA0703700), the National Natural Science Foundation of China (Grant No. 52002021), and the Fundamental Research Funds for the Central Universities of China (Grant No. FRF-IDRY-20-037).
    [1]

    Parkhomenko R G, De Luca O, Kolodziejczyk L, Modin E, Rudolf P, Martínez D, Cunhad L, Knez M 2021 Dalton. Trans. 50 15062Google Scholar

    [2]

    Zhang X L, Liu Q Y, Liu B D, Yang W J, Li J, Niu P J, Jiang X 2017 J. Mater. Chem. C 5 4319Google Scholar

    [3]

    Zhang X L, Liu B D, Liu Q Y, Yang W J M, Xiong C, Li J, Jiang X 2017 Appl. Mater. Interfaces 9 2669Google Scholar

    [4]

    Deminskyi P, Rouf P, Ivanov I G, Pedersen H 2019 J. Vac. Sci. Technol A 37 020926Google Scholar

    [5]

    Iliopoulos E, Moustakas T D 2002 Appl. Phys. Lett. 81 295Google Scholar

    [6]

    Moon Y T, Kim D J, Park J S, Oh J T, Lee J M, Ok Y W, Kim H, Park S J 2001 Appl. Phys. Lett. 79 599Google Scholar

    [7]

    Wu J 2009 J. Appl. Phys. 106 5

    [8]

    Angerer H, Brunner D, Freudenberg F, Ambacher O, Stutzmann M, Höpler R, Körner H J 1997 Appl. Phys. Lett. 71 1504Google Scholar

    [9]

    Jain S C, Willander M, Narayan J, Overstraeten R V 2000 J. Appl. Phys. 87 965Google Scholar

    [10]

    Tonisch K, Buchheim C, Niebelschütz F, Schober A, Gobsch G, Cimalla V, Goldhahn R 2008 J. Appl. Phys. 104 084516Google Scholar

    [11]

    Jebalin B K, Shobha R A, Prajoon P, Kumar N M, Nirmal D 2015 Microelectron. J. 46 1387Google Scholar

    [12]

    Chakroun A, Jaouad A, Bouchilaoun M, Arenas O, Soltani A, Maher H 2017 Phys. Status Solidi A 214 1600836Google Scholar

    [13]

    Ruterana P, De Saint Jores G, Laügt M, Omnes F, Bellet-Amalric E 2001 Appl. Phys. Lett. 78 344Google Scholar

    [14]

    Yang W X, Zhao Y K, Wu Y Y, Li X F, Xing Z W, Bian L F, Lu S L, Luo M C 2019 J. Cryst. Growth 512 213Google Scholar

    [15]

    Puurunen R L 2005 J. Appl. Phys. 97 9

    [16]

    Ozgit C, Donmez I, Alevli M, Biyikli N 2012 J. Vac. Sci. Technol. A 30 01A124Google Scholar

    [17]

    Liu S J, Zhao G, He Y F, Wei H Y, Li Y, Qiu P, Zheng X H 2019 ACS Appl. Mater. Interfaces 11 35382Google Scholar

    [18]

    Liu S J, He Y F, Wei H Y, Qiu P, Song Y M, An Y L, Zheng X H 2019 Chin. Phys. B 28 026801Google Scholar

    [19]

    Liu S J, Peng M Z, Hou C X, He Y F, Li M L, Zheng X H 2017 Nanoscale Res. Lett. 12 1Google Scholar

    [20]

    Qiu P, Wei H Y, An Y, Wu Q, Du W, Jiang Z, Zheng X H 2019 Ceram Int. 46 5765

    [21]

    He Y F, Li M L, Liu S J, Wei H Y, Ye H Y, Song Y M, Zheng X H 2019 Acta Metall. Sin. (English Letters) 32 1530Google Scholar

    [22]

    He Y F, Li M L, Wei H Y, Song Y, Qiu P, Peng M, Zheng X H 2021 Appl. Surf. Sci. 566 150684Google Scholar

    [23]

    Song Y, He Y F, Li Y, Wei H Y, Qiu P, Huang Q, Zheng X H 2021 Cryst. Growth Des. 21 1778Google Scholar

    [24]

    Song Y M, Li Y F, He Y F, Wei H Y, Qiu P, Hu X T, Su Z L, Jiang Y, Peng M Z, Zheng X H 2022 ACS Appl. Mater. Interfaces 14 16866Google Scholar

    [25]

    Liu S J, Zhao G, He Y F, Li Y F, Wei H Y, Qiu P, Wang X Y, Wang X X, Cheng J D, Peng M Z, Zaera F, Zheng X H 2020 Appl. Phys. Lett. 116 211601Google Scholar

    [26]

    Nepal N, Anderson V R, Hite J K, Eddy C R 2015 Thin Solid Films 589 47Google Scholar

    [27]

    Rouf P, Palisaitis J, Bakhit B, O’Brien N J, Pedersen H 2021 J. Mater. Chem. C 9 13077Google Scholar

    [28]

    Choi S, Ansari A S, Yun H J, Kim H, Shong B, Choi B J 2020 J. Alloy. Compd. 854 157186

    [29]

    Ergen O, Gilbert S M, Pham T, Turner S J, Tan M T Z, Worsley M A, Zettl A 2017 Nat. Mater. 16 522Google Scholar

    [30]

    Wei H Y, Wu J, Qiu P, Liu S, He Y F, Peng MZ, Li D, Meng Q, Zaera F, Zheng X H 2019 J. Mater. Chem. A 7 25347Google Scholar

    [31]

    Wei H Y, Qiu P, Peng M Z, Wu Q, Liu S, An Y, He Y F, Song Y M, Zheng X H 2019 Appl. Surf. Sci. 476 608Google Scholar

    [32]

    李晔, 王茜茜, 卫会云, 仇鹏, 何荧峰, 宋祎萌, 段彰, 申诚涛, 彭铭曾, 郑新和 2021 70 187702Google Scholar

    Li Y, Wang X X, Wei H Y, Qiu P, He Y F, Song Y M, Duan Z, Shen C T, Peng M Z, Zheng X H 2021 Acta Phys. Sin. 70 187702Google Scholar

    [33]

    Zhang Q, Parimoo H, Martel E, Zhao S 2022 Ecs. J. Solid State Sc. 11 116002Google Scholar

    [34]

    Portillo M C, Hernández S G, Bernal Y P, Velis I M, Cab J V, Alcántara S, Alvarado J 2020 Opt. Mater. 108 110206Google Scholar

    [35]

    Koo A, Budde F, Ruck B, Trodahl H, Bittar A, Preston A, Zeinert A 2006 J. Appl. Phys. 99 034312Google Scholar

    [36]

    Choi Y Y, Choi K H, Kim H K 2011 J. Electrochem. Soc. 158 J349Google Scholar

    [37]

    Su L X, Chen S Y, Zhao L Q, Zuo Y Q, Xie J 2020 Appl. Phys. Lett. 117 211101Google Scholar

    [38]

    Sun X J, Wu C, Wang Y C, Guo D Y 2022 J. Vacuum Sci. Technol. B 40 012204Google Scholar

    [39]

    Zhang J, Li S L, Xiong H, Tian W, Li Y, Fang Y Y, Wu Z H, Dai J N, Xu J T, Li X Y, Chen C Q 2014 Nanoscale Res. Lett. 9 341Google Scholar

    [40]

    梁琦, 杨孟骐, 张京阳, 王如志 2022 71 097302Google Scholar

    Liang Q, Yang M Q, Zhang J Y, Wang R Z 2022 Acta Phys. Sin. 71 097302Google Scholar

    [41]

    冯嘉恒, 唐立丹, 刘邦武, 夏洋, 王冰 2013 62 117302Google Scholar

    Feng J H, Tang L D, Liu B W, Xia Y, Wang B 2013 Acta Phys. Sin. 62 117302Google Scholar

    [42]

    Motamedi P, Cadien K 2014 Appl. Surf. Sci. 315 104Google Scholar

    [43]

    Alevli M, Haider A, Kizir S, Leghari S A, Biyikli N 2016 J. Vac. Sci. Technol. A 34 01A137Google Scholar

    [44]

    Wang Q, Cheng X H, Zheng L, Shen L Y, Li J L, Zhang D L, Qian R, Yu Y H 2017 RSC Adv. 7 11745Google Scholar

    [45]

    Qu L H, Peng X G 2002 J. Am. Chem. Soc. 124 2049Google Scholar

    [46]

    Ren F M, Li S J, He C L 2015 Sci. China Mater. 58 490Google Scholar

  • 图 1  (a) 一个完整的AlGaN-PEALD循环中AlN和GaN的生长过程; (b) 在蓝宝石上生长AlGaN的循环结构图

    Fig. 1.  (a) Growth process of AlN and GaN in a complete AlGaN-PEALD cycle; (b) diagram of the cycle structure for growing AlGaN on sapphire.

    图 2  A1G1的生长温度与薄膜厚度关系

    Fig. 2.  Growth temperature versus film thickness for A1G1.

    图 3  XRR测试图 (a) 200 ℃, 250 ℃和300 ℃下生长的A1G1; (b) 300 ℃下生长的A3G1, A1G1和A1G3

    Fig. 3.  XRR test plots: (a) A1G1 grown at 200 ℃, 250 ℃ and 300 ℃; (b) A3G1, A1G1 and A1G3 grown at 300 ℃.

    图 4  300 ℃下, 不同AlN/GaN循环比例的吸收谱图

    Fig. 4.  Absorption spectra of different AlN/GaN cycle ratios at 300 ℃.

    图 5  A3G1 (a)—(c), A1G1 (d)—(f), A1G3 (g)—(i)的XPS谱图 (a), (d), (g) Al 2p; (b), (e), (h) Ga 2p3/2; (c), (f), (i) N 1s

    Fig. 5.  XPS spectra of A3G1 (a)–(c), A1G1 (d)–(f), A1G3 (g)–(i): (a), (d), (g) Al 2p; (b), (e), (h) Ga 2p3/2; (c), (f), (i) N 1s.

    图 6  CdSe QDs的HRTEM (a)和稳态PL图(b)

    Fig. 6.  HRTEM (a) and steady-state PL maps (b) of CdSe QDs.

    图 7  量子点太阳能电池示意图 (a) AlGaN/ZnS; (b) ZnS/AlGaN

    Fig. 7.  Schematic diagram of QDSCs: (a) AlGaN/ZnS; (b) ZnS/AlGaN.

    图 8  两种结构下沉积不同周期AlGaN薄膜QDSCs的J-V曲线 (a) 5 cycles; (b) 20 cycles; (c) 30 cycles. (d) 5, 20, 30 cycles的Nyquist曲线

    Fig. 8.  J-V curves of QDSCs of AlGaN thin films with different cycles deposited under two structures: (a) 5 cycles; (b) 20 cycles; (c) 30 cycles. (d) Nyquist curves for 5, 20 and 30 cycles.

    表 1  不同循环比例生长的AlGaN薄膜的元素组成

    Table 1.  Elemental composition of AlGaN films grown with different cyclic ratios.

    SamplesAl/%Ga/%N/%O/%C/%
    A3G137.974.2116.0338.563.32
    A1G131.897.2820.8335.184.82
    A1G321.8817.5327.729.533.36
    下载: 导出CSV

    表 2  5, 20和30 cycles AlGaN薄膜不同结构J-V测试结果

    Table 2.  J-V test results for different structures of 5, 20 and 30 cycles AlGaN films.

    SamplesJsc/(mA·cm–2)Voc/VFF/%PCE/%
    5AlGaN/ZnS9.30.5660.283.13
    ZnS/5AlGaN7.710.5360.492.5
    20AlGaN/ZnS8.360.5662.692.91
    ZnS/20AlGaN7.90.5456.872.44
    30AlGaN/ZnS6.020.5165.922.01
    ZnS/30AlGaN5.390.4958.811.57
    RC6.810.5158.592.02
    下载: 导出CSV

    表 3  5, 20和30 cycles AlGaN QDSCs的电化学阻抗谱拟合结果

    Table 3.  Electrochemical impedance spectrum fitting results for 5, 20 and 30 cycles AlGaN QDSCs.

    Samples cycles52030
    ${R_{ {\text{ct-Ti} }{{\text{O} }_{\text{2} } } }}/\Omega$18.9332.7241.97
    下载: 导出CSV
    Baidu
  • [1]

    Parkhomenko R G, De Luca O, Kolodziejczyk L, Modin E, Rudolf P, Martínez D, Cunhad L, Knez M 2021 Dalton. Trans. 50 15062Google Scholar

    [2]

    Zhang X L, Liu Q Y, Liu B D, Yang W J, Li J, Niu P J, Jiang X 2017 J. Mater. Chem. C 5 4319Google Scholar

    [3]

    Zhang X L, Liu B D, Liu Q Y, Yang W J M, Xiong C, Li J, Jiang X 2017 Appl. Mater. Interfaces 9 2669Google Scholar

    [4]

    Deminskyi P, Rouf P, Ivanov I G, Pedersen H 2019 J. Vac. Sci. Technol A 37 020926Google Scholar

    [5]

    Iliopoulos E, Moustakas T D 2002 Appl. Phys. Lett. 81 295Google Scholar

    [6]

    Moon Y T, Kim D J, Park J S, Oh J T, Lee J M, Ok Y W, Kim H, Park S J 2001 Appl. Phys. Lett. 79 599Google Scholar

    [7]

    Wu J 2009 J. Appl. Phys. 106 5

    [8]

    Angerer H, Brunner D, Freudenberg F, Ambacher O, Stutzmann M, Höpler R, Körner H J 1997 Appl. Phys. Lett. 71 1504Google Scholar

    [9]

    Jain S C, Willander M, Narayan J, Overstraeten R V 2000 J. Appl. Phys. 87 965Google Scholar

    [10]

    Tonisch K, Buchheim C, Niebelschütz F, Schober A, Gobsch G, Cimalla V, Goldhahn R 2008 J. Appl. Phys. 104 084516Google Scholar

    [11]

    Jebalin B K, Shobha R A, Prajoon P, Kumar N M, Nirmal D 2015 Microelectron. J. 46 1387Google Scholar

    [12]

    Chakroun A, Jaouad A, Bouchilaoun M, Arenas O, Soltani A, Maher H 2017 Phys. Status Solidi A 214 1600836Google Scholar

    [13]

    Ruterana P, De Saint Jores G, Laügt M, Omnes F, Bellet-Amalric E 2001 Appl. Phys. Lett. 78 344Google Scholar

    [14]

    Yang W X, Zhao Y K, Wu Y Y, Li X F, Xing Z W, Bian L F, Lu S L, Luo M C 2019 J. Cryst. Growth 512 213Google Scholar

    [15]

    Puurunen R L 2005 J. Appl. Phys. 97 9

    [16]

    Ozgit C, Donmez I, Alevli M, Biyikli N 2012 J. Vac. Sci. Technol. A 30 01A124Google Scholar

    [17]

    Liu S J, Zhao G, He Y F, Wei H Y, Li Y, Qiu P, Zheng X H 2019 ACS Appl. Mater. Interfaces 11 35382Google Scholar

    [18]

    Liu S J, He Y F, Wei H Y, Qiu P, Song Y M, An Y L, Zheng X H 2019 Chin. Phys. B 28 026801Google Scholar

    [19]

    Liu S J, Peng M Z, Hou C X, He Y F, Li M L, Zheng X H 2017 Nanoscale Res. Lett. 12 1Google Scholar

    [20]

    Qiu P, Wei H Y, An Y, Wu Q, Du W, Jiang Z, Zheng X H 2019 Ceram Int. 46 5765

    [21]

    He Y F, Li M L, Liu S J, Wei H Y, Ye H Y, Song Y M, Zheng X H 2019 Acta Metall. Sin. (English Letters) 32 1530Google Scholar

    [22]

    He Y F, Li M L, Wei H Y, Song Y, Qiu P, Peng M, Zheng X H 2021 Appl. Surf. Sci. 566 150684Google Scholar

    [23]

    Song Y, He Y F, Li Y, Wei H Y, Qiu P, Huang Q, Zheng X H 2021 Cryst. Growth Des. 21 1778Google Scholar

    [24]

    Song Y M, Li Y F, He Y F, Wei H Y, Qiu P, Hu X T, Su Z L, Jiang Y, Peng M Z, Zheng X H 2022 ACS Appl. Mater. Interfaces 14 16866Google Scholar

    [25]

    Liu S J, Zhao G, He Y F, Li Y F, Wei H Y, Qiu P, Wang X Y, Wang X X, Cheng J D, Peng M Z, Zaera F, Zheng X H 2020 Appl. Phys. Lett. 116 211601Google Scholar

    [26]

    Nepal N, Anderson V R, Hite J K, Eddy C R 2015 Thin Solid Films 589 47Google Scholar

    [27]

    Rouf P, Palisaitis J, Bakhit B, O’Brien N J, Pedersen H 2021 J. Mater. Chem. C 9 13077Google Scholar

    [28]

    Choi S, Ansari A S, Yun H J, Kim H, Shong B, Choi B J 2020 J. Alloy. Compd. 854 157186

    [29]

    Ergen O, Gilbert S M, Pham T, Turner S J, Tan M T Z, Worsley M A, Zettl A 2017 Nat. Mater. 16 522Google Scholar

    [30]

    Wei H Y, Wu J, Qiu P, Liu S, He Y F, Peng MZ, Li D, Meng Q, Zaera F, Zheng X H 2019 J. Mater. Chem. A 7 25347Google Scholar

    [31]

    Wei H Y, Qiu P, Peng M Z, Wu Q, Liu S, An Y, He Y F, Song Y M, Zheng X H 2019 Appl. Surf. Sci. 476 608Google Scholar

    [32]

    李晔, 王茜茜, 卫会云, 仇鹏, 何荧峰, 宋祎萌, 段彰, 申诚涛, 彭铭曾, 郑新和 2021 70 187702Google Scholar

    Li Y, Wang X X, Wei H Y, Qiu P, He Y F, Song Y M, Duan Z, Shen C T, Peng M Z, Zheng X H 2021 Acta Phys. Sin. 70 187702Google Scholar

    [33]

    Zhang Q, Parimoo H, Martel E, Zhao S 2022 Ecs. J. Solid State Sc. 11 116002Google Scholar

    [34]

    Portillo M C, Hernández S G, Bernal Y P, Velis I M, Cab J V, Alcántara S, Alvarado J 2020 Opt. Mater. 108 110206Google Scholar

    [35]

    Koo A, Budde F, Ruck B, Trodahl H, Bittar A, Preston A, Zeinert A 2006 J. Appl. Phys. 99 034312Google Scholar

    [36]

    Choi Y Y, Choi K H, Kim H K 2011 J. Electrochem. Soc. 158 J349Google Scholar

    [37]

    Su L X, Chen S Y, Zhao L Q, Zuo Y Q, Xie J 2020 Appl. Phys. Lett. 117 211101Google Scholar

    [38]

    Sun X J, Wu C, Wang Y C, Guo D Y 2022 J. Vacuum Sci. Technol. B 40 012204Google Scholar

    [39]

    Zhang J, Li S L, Xiong H, Tian W, Li Y, Fang Y Y, Wu Z H, Dai J N, Xu J T, Li X Y, Chen C Q 2014 Nanoscale Res. Lett. 9 341Google Scholar

    [40]

    梁琦, 杨孟骐, 张京阳, 王如志 2022 71 097302Google Scholar

    Liang Q, Yang M Q, Zhang J Y, Wang R Z 2022 Acta Phys. Sin. 71 097302Google Scholar

    [41]

    冯嘉恒, 唐立丹, 刘邦武, 夏洋, 王冰 2013 62 117302Google Scholar

    Feng J H, Tang L D, Liu B W, Xia Y, Wang B 2013 Acta Phys. Sin. 62 117302Google Scholar

    [42]

    Motamedi P, Cadien K 2014 Appl. Surf. Sci. 315 104Google Scholar

    [43]

    Alevli M, Haider A, Kizir S, Leghari S A, Biyikli N 2016 J. Vac. Sci. Technol. A 34 01A137Google Scholar

    [44]

    Wang Q, Cheng X H, Zheng L, Shen L Y, Li J L, Zhang D L, Qian R, Yu Y H 2017 RSC Adv. 7 11745Google Scholar

    [45]

    Qu L H, Peng X G 2002 J. Am. Chem. Soc. 124 2049Google Scholar

    [46]

    Ren F M, Li S J, He C L 2015 Sci. China Mater. 58 490Google Scholar

  • [1] 隽珽, 邢家赫, 曾凡聪, 郑鑫, 徐琳. 基于SnO2:DPEPO混合电子传输层的钙钛矿太阳能电池性能研究.  , 2024, 73(19): 198401. doi: 10.7498/aps.73.20240827
    [2] 张翱, 张春秀, 张春梅, 田益民, 闫君, 孟涛. CH3NH3多聚体的形成对有机-无机杂化钙钛矿太阳能电池性能的影响.  , 2021, 70(16): 168801. doi: 10.7498/aps.70.20210353
    [3] 李家森, 梁春军, 姬超, 宫宏康, 宋奇, 张慧敏, 刘宁. 在空穴传输层聚(3-己基噻吩)中添加1, 8-二碘辛烷改善碳基钙钛矿太阳能电池的性能.  , 2021, 70(19): 198403. doi: 10.7498/aps.70.20210586
    [4] 付鹏飞, 虞丹妮, 彭子健, 龚晋慷, 宁志军. 扭曲二维结构钝化的钙钛矿太阳能电池.  , 2019, 68(15): 158802. doi: 10.7498/aps.68.20190306
    [5] 夏俊民, 梁超, 邢贵川. 喷墨打印钙钛矿太阳能电池研究进展与展望.  , 2019, 68(15): 158807. doi: 10.7498/aps.68.20190302
    [6] 袁怀亮, 李俊鹏, 王鸣魁. 有机无机杂化固态太阳能电池的研究进展.  , 2015, 64(3): 038405. doi: 10.7498/aps.64.038405
    [7] 柯少颖, 王茺, 潘涛, 何鹏, 杨杰, 杨宇. 渐变带隙氢化非晶硅锗薄膜太阳能电池的优化设计.  , 2014, 63(2): 028802. doi: 10.7498/aps.63.028802
    [8] 丁美斌, 娄朝刚, 王琦龙, 孙强. GaAs量子阱太阳能电池量子效率的研究.  , 2014, 63(19): 198502. doi: 10.7498/aps.63.198502
    [9] 王海啸, 郑新和, 吴渊渊, 甘兴源, 王乃明, 杨辉. 1 eV吸收带边GaInAs/GaNAs超晶格太阳能电池的阱层设计.  , 2013, 62(21): 218801. doi: 10.7498/aps.62.218801
    [10] 陈晓波, 杨国建, 李崧, Sawanobori N., 徐怡庄, 陈晓端, 周固. 掺钬镱离子的氟氧化物玻璃陶瓷的一级和二级红外量子剪裁的研究.  , 2012, 61(22): 227803. doi: 10.7498/aps.61.227803
    [11] 杜凌霄, 胡炼, 张兵坡, 才玺坤, 楼腾刚, 吴惠桢. 微腔中CdSe量子点荧光增强效应.  , 2011, 60(11): 117803. doi: 10.7498/aps.60.117803
    [12] 陈晓波, 杨国建, 张春林, 李永良, 廖红波, 张蕴芝, 陈鸾, 王亚非. Er0.3Gd0.7VO4晶体红外量子剪裁效应及其在太阳能电池应用上的研究.  , 2010, 59(11): 8191-8199. doi: 10.7498/aps.59.8191
    [13] 朱宝华, 王芳芳, 张 琨, 马国宏, 顾玉宗, 郭立俊, 钱士雄. CdSe量子点的线性和非线性光学特性.  , 2008, 57(10): 6557-6564. doi: 10.7498/aps.57.6557
    [14] 周 梅, 左淑华, 赵德刚. 一种新型GaN基肖特基结构紫外探测器.  , 2007, 56(9): 5513-5517. doi: 10.7498/aps.56.5513
    [15] 许 颖, 刁宏伟, 张世斌, 励旭东, 曾湘波, 王文静, 廖显伯. 微量掺碳nc-SiC:H薄膜用于p-i-n太阳电池的窗口层.  , 2007, 56(5): 2915-2919. doi: 10.7498/aps.56.2915
    [16] 谢自力, 张 荣, 修向前, 韩 平, 刘 斌, 陈 琳, 俞慧强, 江若琏, 施 毅, 郑有炓. 用于紫外探测器DBR结构的高质量AlGaN材料MOCVD生长及其特性研究.  , 2007, 56(11): 6717-6721. doi: 10.7498/aps.56.6717
    [17] 游 达, 许金通, 汤英文, 何 政, 徐运华, 龚海梅. p型GaN/Al0.35Ga0.65N/GaN应变量子阱中二维空穴气的研究.  , 2006, 55(12): 6600-6605. doi: 10.7498/aps.55.6600
    [18] 郝会颖, 孔光临, 曾湘波, 许 颖, 刁宏伟, 廖显伯. 非晶/微晶相变域硅薄膜及其太阳能电池.  , 2005, 54(7): 3327-3331. doi: 10.7498/aps.54.3327
    [19] 金 华, 张立功, 郑著宏, 孔祥贵, 安立楠, 申德振. ZnCdSe量子阱/CdSe量子点耦合结构中的激子隧穿过程.  , 2004, 53(9): 3211-3214. doi: 10.7498/aps.53.3211
    [20] 李培咸, 郝 跃, 范 隆, 张进城, 张金凤, 张晓菊. 基于量子微扰的AlGaN/GaN异质结波函数半解析求解.  , 2003, 52(12): 2985-2988. doi: 10.7498/aps.52.2985
计量
  • 文章访问数:  3177
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-29
  • 修回日期:  2023-04-28
  • 上网日期:  2023-05-04
  • 刊出日期:  2023-07-05

/

返回文章
返回
Baidu
map