-
By using the infinite time evolving block decimation in the presentation of infinite matrix product states, we study an extended quantum compass model (EQCM). This model does not only include extremely rich phase diagrams due to competitions of orbital degrees of freedom and anisotropic couplings between pseudospin-1/2 operators but also have the capacity to describe property of protected qubits for quantum computation which leads to lots of attentions paid to the phase boundaries of the EQCM. However, few attentions are paid to long-range topological string correlation order parameters of the EQCM. To study order parameters, one should understand spontaneous symmetry breaking which relates to Landau quantum phase transitions theory. Once spontaneous symmetry breaking happens, there should exist some local order which can be described by a local order parameter. This order parameter can be used to distinguish the phase from others. For continuous quantum phase transitions, in the critical regime, critical exponents can be extracted. Unfortunately, the long-range topological string correlation orders are beyond Landau quantum phase transitions theory, one can not directly use two paradigms of Landau-Ginzburg-Wilson. Usually, one can define a local order parameter by local magnetization. Naturally, one can also refer to this way to define the long-range topological string correlation order parameters by long-range topological string correlations on the following conditions, i.e. the quantum system undergoes a hidden spontaneous symmetry breaking; the long-range topological string correlation order parameter can be used to distinguish the phase from others; for continuous quantum phase transitions, the long-range topological string correlation order parameter satisfies scaling law when control parameter getting close to critical point. Based on above idea, in order to characterize the topological ordered phases and quantum phase transitions in the EQCM, even/odd long-range topological string correlations are introduced based on even/odd bonds. Hereafter, fidelity per lattice site, even/odd long-range topological string correlations, the saturation behavior of odd long-range topological string correlations and order parameters are calculated. The long-range topological string correlations show three distinguished behaviors which include decaying to zero, monotonic saturation and oscillatory saturation. By the above characterizations, oscillatory/monotonic odd long-range topological string correlation order parameter is derived. Then ground-state phase diagram of order parameters is computed which includes oscillatory/monotonic odd long-range topological string correlation order phase and antiferromagnetic phase. In the critical regime, critical exponent β=1/8 extracted from monotonic odd long-range topological string correlation order parameter and local magnetization shows the phase transition belongs to Ising universality. In addition, the phase transition points, the order of the phase transitions of fidelity show consistent with the results of order parameters.
-
Keywords:
- quantum phase transition /
- string correlation /
- topological order /
- critical exponent
[1] Kugel K I, Khomskii D I 1973 Zh. Eksp. Teor. Fiz. 64 1429
[2] Doucot B, Feigelán M V, IoffeL B, Ioselevich A S 2005 Phys. Rev. B 71 024505
[3] Milman P, Maineult W, Guibal S, Guidoni L, Douot B, Ioffe L, Coudreau T 2007 Phys. Rev. Lett. 99 020503
[4] Brzezicki W, Dziarmaga J, Olés A M 2007 Phys. Rev. B 75 134418
[5] You W L, Tian G S 2008 Phys. Rev. B 78 184406
[6] Brzezicki W, Olés A M 2009 Acta Phys. Pol. A 115 162
[7] Sun K W, Zhang Y Y, Chen Q H 2009 Phys. Rev. B 79 104429
[8] Sun K W, Chen Q H 2009 Phys. Rev. B 80 174417
[9] Wang H T, Cho S Y 2015 J. Phys.:Condens. Matter 27 015603
[10] Eriksson E, Johannesson H 2009 Phys. Rev. B 79 224424
[11] Liu G H, Li W, You W L, Tian G S, Su G 2012 Phys. Rev. B 85 184422
[12] Wang L C, Yi X X 2010 Eur. Phys. J. D 77 281
[13] Jafari R 2011 Phys. Rev. B 84 035112
[14] Motamedifar M, Mahdavifar S, Shayesteh S F 2011 Eur. Phys. J. B 83 181
[15] You W L 2012 Eur. Phys. J. B 85 83
[16] Liu G H, Li W, You W L 2012 Eur. Phys. J. B 85 168
[17] Vidal G 2007 Phys. Rev. Lett. 98 070201
[18] Zhou H Q 2008 arXiv:0803.0585v1 [cond-mat.stat-mech]
[19] Wang H T, Cho S Y, Batchelor M T 2015 arXiv:1508.01316 [quant-ph]
[20] Zhou H, Barjaktarevi J P 2008 J. Phys. A:Math. Theor. 41 412001
[21] Su Y H, Chen A M, Wang H L, Xiang C H 2017 Acta Phys. Sin. 66 120301 (in Chinese) [苏耀恒, 陈爱民, 王洪雷, 相春环 2017 66 120301]
[22] Kennedy T, Tasaki H 1992 Phys. Rev. B 45 304
[23] Hida K 1992 Phys. Rev. B 45 2207
[24] Chen X H, Cho S Y, Zhou H Q 2016 J. Korean Phys. Soc. 68 1114
[25] Wang H T, Li B, Cho S Y 2013 Phys. Rev. B 87 054402
[26] Hatsugai Y 2007 J. Phys.:Condens. Matter 19 145209
[27] Pollmann F, Berg E, Turner A, Oshikawa M 2012 Phys. Rev. B 85 075125
[28] Su Y H, Cho S Y, Li B, Wang H L, Zhou H Q 2012 J. Phys. Soc. Jpn. 81 074003
-
[1] Kugel K I, Khomskii D I 1973 Zh. Eksp. Teor. Fiz. 64 1429
[2] Doucot B, Feigelán M V, IoffeL B, Ioselevich A S 2005 Phys. Rev. B 71 024505
[3] Milman P, Maineult W, Guibal S, Guidoni L, Douot B, Ioffe L, Coudreau T 2007 Phys. Rev. Lett. 99 020503
[4] Brzezicki W, Dziarmaga J, Olés A M 2007 Phys. Rev. B 75 134418
[5] You W L, Tian G S 2008 Phys. Rev. B 78 184406
[6] Brzezicki W, Olés A M 2009 Acta Phys. Pol. A 115 162
[7] Sun K W, Zhang Y Y, Chen Q H 2009 Phys. Rev. B 79 104429
[8] Sun K W, Chen Q H 2009 Phys. Rev. B 80 174417
[9] Wang H T, Cho S Y 2015 J. Phys.:Condens. Matter 27 015603
[10] Eriksson E, Johannesson H 2009 Phys. Rev. B 79 224424
[11] Liu G H, Li W, You W L, Tian G S, Su G 2012 Phys. Rev. B 85 184422
[12] Wang L C, Yi X X 2010 Eur. Phys. J. D 77 281
[13] Jafari R 2011 Phys. Rev. B 84 035112
[14] Motamedifar M, Mahdavifar S, Shayesteh S F 2011 Eur. Phys. J. B 83 181
[15] You W L 2012 Eur. Phys. J. B 85 83
[16] Liu G H, Li W, You W L 2012 Eur. Phys. J. B 85 168
[17] Vidal G 2007 Phys. Rev. Lett. 98 070201
[18] Zhou H Q 2008 arXiv:0803.0585v1 [cond-mat.stat-mech]
[19] Wang H T, Cho S Y, Batchelor M T 2015 arXiv:1508.01316 [quant-ph]
[20] Zhou H, Barjaktarevi J P 2008 J. Phys. A:Math. Theor. 41 412001
[21] Su Y H, Chen A M, Wang H L, Xiang C H 2017 Acta Phys. Sin. 66 120301 (in Chinese) [苏耀恒, 陈爱民, 王洪雷, 相春环 2017 66 120301]
[22] Kennedy T, Tasaki H 1992 Phys. Rev. B 45 304
[23] Hida K 1992 Phys. Rev. B 45 2207
[24] Chen X H, Cho S Y, Zhou H Q 2016 J. Korean Phys. Soc. 68 1114
[25] Wang H T, Li B, Cho S Y 2013 Phys. Rev. B 87 054402
[26] Hatsugai Y 2007 J. Phys.:Condens. Matter 19 145209
[27] Pollmann F, Berg E, Turner A, Oshikawa M 2012 Phys. Rev. B 85 075125
[28] Su Y H, Cho S Y, Li B, Wang H L, Zhou H Q 2012 J. Phys. Soc. Jpn. 81 074003
Catalog
Metrics
- Abstract views: 6308
- PDF Downloads: 153
- Cited By: 0