搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

量子多体系统中的拓扑序与分数化激发

顾昭龙 李建新

引用本文:
Citation:

量子多体系统中的拓扑序与分数化激发

顾昭龙, 李建新

Topological order and fractionalized excitations in quantum many-body systems

Gu Zhao-Long, Li Jian-Xin
PDF
HTML
导出引用
  • 朗道费米液体理论和金兹堡-朗道相变理论是传统凝聚态物理两座重要的基石, 在处理BCS超导体和液氦超流体的形成机制等重要物理问题中取得了巨大成功. 然而, 以20世纪80年代量子霍尔效应和高温超导的发现为开端, 人们逐渐认识到, 对于一大类新的量子态, 比如分数量子霍尔态和量子自旋液体, 其性质超越了朗道费米液体理论和金兹堡-朗道相变理论. 拓扑序及其所具有的长程多体量子纠缠和分数化激发成为我们理解这些奇异量子态的关键概念. 在量子材料和量子模拟系统中设计并寻找具有拓扑序的物态、探测并操控其分数化激发是当代凝聚态物理重要的研究方向. 近期, 在里德伯原子体系、超导量子处理器和二维摩尔超晶格等具有高度可调控性的量子实验平台中, 拓扑序的量子模拟和操控得到了快速发展并取得了重要成果. 本文将简要论述拓扑序在传统凝聚态材料体系和量子模拟体系中最近的研究进展和挑战, 并对该领域未来可能的发展方向做出展望.
    The Landau Fermi liquid theory and the Ginzburg-Landau phase transition theory stand as two pivotal cornerstones in traditional condensed matter physics, achieving significant success in addressing crucial physical phenomena such as BCS superconductors and liquid helium superfluids. However, marked by the discoveries of the quantum Hall effect and high-temperature superconductivity in the 1980s, it gradually became evident that for a broad class of novel quantum states, such as fractional quantum Hall states and quantum spin liquids, their properties transcend the Landau Fermi liquid theory and Ginzburg-Landau phase transition theory. Topological order and its related concepts of long-range many-body quantum entanglement and fractionalized excitation have become the key concepts to understand these exotic quantum states. Designing and identifying topologically ordered states of matter in quantum materials and quantum simulation systems, and probing and manipulating their fractionalized excitations, are important research directions in modern condensed matter physics. In recent years, great progress has been made in the quantum simulation and manipulation of topological order on highly controllable quantum simulation platforms, such as Rydberg atomic systems, superconducting quantum processors, and two-dimensional moiré superlattices. This article provides a brief overview of recent research advances and challenges in the study of topological order in traditional condensed matter systems and quantum simulation experimental platforms. It also provides prospects for the future developments of this field.
      通信作者: 李建新, jxli@nju.edu.cn
      Corresponding author: Li Jian-Xin, jxli@nju.edu.cn
    [1]

    Anderson P W 1972 Science 177 393Google Scholar

    [2]

    Lifshitz E M, Pitaevskii L P 1980 Statistical Physics Part 2: Theory of the Condensed State (New York: Pergamon Press) p1

    [3]

    Klitzing K V, Dorda G, Pepper M 1980 Phys. Rev. Lett. 45 494Google Scholar

    [4]

    Tsui D C, Stormer H L, Gossard A C 1982 Phys. Rev. Lett. 48 1559Google Scholar

    [5]

    Bednorz J G, Müler K A 1986 Z. Phys. B. 64 189Google Scholar

    [6]

    Laughlin R B 1983 Phys. Rev. Lett. 50 1395Google Scholar

    [7]

    Broholm C, Cava R J, Kivelson S A, Nocera D G, Norman M R, Senthil T 2020 Science 367 eaay0668Google Scholar

    [8]

    Keimer B, Kivelson S A, Norman M R, Uchida S, Zaanen J 2015 Nature 518 179Google Scholar

    [9]

    Wen X G 1990 Int. J. Mod. Phys. B 4 239Google Scholar

    [10]

    Zeng B, Chen X, Zhou D L, Wen X G 2019 Quantum Information Meets Quantum Matter: From Quantum Entanglement to Topological Phases of Many-Body Systems (New York: Springer) p1

    [11]

    Semeghini G, Levine H, Keesling A, Ebadi S, Wang T T, Bluvstein D, Verresen R, Pichler H, Kalinowski M, Samajdar R, Omran A, Sachdev S, Vishwanath A, Greiner M, Vuletić V, Lukin M D 2021 Science 374 1242Google Scholar

    [12]

    Satzinger K J, Liu Y J, Smith A, Knapp C, Newman M, Jones C, Chen Z, Quintana C, Mi X, Dunsworth A, Gidney C, Aleiner I, Arute F, Arya K, Atalaya J, Babbush R, Bardin J C, Barends R, Basso J, Bengtsson A, Bilmes A, Broughton M, Buckley B B, Buell D A, Burkett B, Bushnell N, Chiaro B, Collins R, Courtney W, Demura S, Derk A R, Eppens D, Erickson C, Faoro L, Farhi E, Fowler A G, Foxen B, Giustina M, Greene A, Gross J A, Harrigan M P, Harrington S D, Hilton J, Hong S, Huang T, Huggins W J, Ioffe L B, Isakov S V, Jeffrey E, Jiang Z, Kafri D, Kechedzhi K, Khattar T, Kim S, Klimov P V, Korotkov A N, Kostritsa F, Landhuis D, Laptev P, Locharla A, Lucero E, Martin O, McClean J R, McEwen M, Miao K C, Mohseni M, Montazeri S, Mruczkiewicz W, Mutus J, Naaman O, Neeley M, Neill C, Niu M Y, O'Brien T E, Opremcak A, Pató B, Petukhov A, Rubin N C, Sank D, Shvarts V, Strain D, Szalay M, Villalonga B, White T C, Yao Z, Yeh P, Yoo J, Zalcman A, Neven H, Boixo S, Megrant A, Chen Y, Kelly J, Smelyanskiy V, Kitaev A, Knap M, Pollmann F, Roushan P 2021 Science 374 1237Google Scholar

    [13]

    Cai J, Anderson E, Wang C, Zhang X, Liu X, Holtzmann W, Zhang Y, Fan F, Taniguchi T, Watanabe K, Ran Y, Cao T, Fu L, Xiao D, Yao W, Xu X 2023 Nature 622 63Google Scholar

    [14]

    Zeng Y, Xia Z, Kang K, Zhu J, Knüppel P, Vaswani C, Watanabe K, Taniguchi T, Mak K F, Shan J 2023 Nature 622 69Google Scholar

    [15]

    Park H, Cai J, Anderson E, Zhang Y, Zhu J, Liu X, Wang C, Holtzmann W, Hu C, Liu Z, Taniguchi T, Watanabe K, Chu J H, Cao T, Fu L, Yao W, Chang C Z, Cobden D, Xiao D, Xu X 2023 Nature 622 74Google Scholar

    [16]

    Xu F, Sun Z, Jia T, Liu C, Xu C, Li C, Gu Y, Watanabe K, Taniguchi T, Tong B, Jia J, Shi Z, Jiang S, Zhang Y, Liu X, Li T 2023 Phys. Rev. X 13 031037Google Scholar

    [17]

    Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045Google Scholar

    [18]

    Wen J, Yu S L, Li S, Yu W, Li J X 2019 npj Quantum Mater. 4 1Google Scholar

    [19]

    Shimokawa T, Watanabe K, Kawamura H 2015 Phys. Rev. B 92 134407Google Scholar

    [20]

    Ma Z, Wang J, Dong Z Y, Zhang J, Li S, Zheng S H, Yu Y, Wang W, Che L, Ran K, Bao S, Cai Z, Čermák P, Schneidewind A, Yano S, Gardner J S, Lu X, Yu S L, Liu J M, Li S, Li J X, Wen J 2018 Phys. Rev. Lett. 120 087201Google Scholar

    [21]

    Kasahara Y, Ohnishi T, Mizukami Y, Tanaka O, Ma S, Sugii K, Kurita N, Tanaka H, Nasu J, Motome Y, Shibauchi T, Matsuda Y 2018 Nature 559 227Google Scholar

    [22]

    Scholl P, Schuler M, Williams H J, Eberharter A A, Barredo D, Schymik K N, Lienhard V, Henry L P, Lang T C, Lahaye T, Läuchli A M, Browaeys A 2021 Nature 595 233Google Scholar

    [23]

    Ebadi S, Wang T T, Levine H, Keesling A, Semeghini G, Omran A, Bluvstein D, Samajdar R, Pichler H, Ho W W, Choi S, Sachdev S, Greiner M, Vuletić V, Lukin M D 2021 Nature 595 227Google Scholar

    [24]

    Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Kaxiras E, Ashoori R C, Jarillo-Herrero P 2018 Nature 556 80Google Scholar

    [25]

    Tang E, Mei J W, Wen X G 2011 Phys. Rev. Lett. 106 236802Google Scholar

    [26]

    Neupert T, Santos L, Chamon C, Mudry C 2011 Phys. Rev. Lett. 106 236804Google Scholar

    [27]

    Kitaev A 2006 Ann. Phys. 321 2Google Scholar

    [28]

    Ghiotto A, Shih E M, Pereira G S S G, Rhodes D A, Kim B, Zang J, Millis A J, Watanabe K, Taniguchi T, Hone J C, Wang L, Dean C R, Pasupathy A N 2021 Nature 597 345Google Scholar

    [29]

    Pan H, Wu F, Sarma S D 2020 Phys. Rev. Res. 2 033087Google Scholar

  • [1]

    Anderson P W 1972 Science 177 393Google Scholar

    [2]

    Lifshitz E M, Pitaevskii L P 1980 Statistical Physics Part 2: Theory of the Condensed State (New York: Pergamon Press) p1

    [3]

    Klitzing K V, Dorda G, Pepper M 1980 Phys. Rev. Lett. 45 494Google Scholar

    [4]

    Tsui D C, Stormer H L, Gossard A C 1982 Phys. Rev. Lett. 48 1559Google Scholar

    [5]

    Bednorz J G, Müler K A 1986 Z. Phys. B. 64 189Google Scholar

    [6]

    Laughlin R B 1983 Phys. Rev. Lett. 50 1395Google Scholar

    [7]

    Broholm C, Cava R J, Kivelson S A, Nocera D G, Norman M R, Senthil T 2020 Science 367 eaay0668Google Scholar

    [8]

    Keimer B, Kivelson S A, Norman M R, Uchida S, Zaanen J 2015 Nature 518 179Google Scholar

    [9]

    Wen X G 1990 Int. J. Mod. Phys. B 4 239Google Scholar

    [10]

    Zeng B, Chen X, Zhou D L, Wen X G 2019 Quantum Information Meets Quantum Matter: From Quantum Entanglement to Topological Phases of Many-Body Systems (New York: Springer) p1

    [11]

    Semeghini G, Levine H, Keesling A, Ebadi S, Wang T T, Bluvstein D, Verresen R, Pichler H, Kalinowski M, Samajdar R, Omran A, Sachdev S, Vishwanath A, Greiner M, Vuletić V, Lukin M D 2021 Science 374 1242Google Scholar

    [12]

    Satzinger K J, Liu Y J, Smith A, Knapp C, Newman M, Jones C, Chen Z, Quintana C, Mi X, Dunsworth A, Gidney C, Aleiner I, Arute F, Arya K, Atalaya J, Babbush R, Bardin J C, Barends R, Basso J, Bengtsson A, Bilmes A, Broughton M, Buckley B B, Buell D A, Burkett B, Bushnell N, Chiaro B, Collins R, Courtney W, Demura S, Derk A R, Eppens D, Erickson C, Faoro L, Farhi E, Fowler A G, Foxen B, Giustina M, Greene A, Gross J A, Harrigan M P, Harrington S D, Hilton J, Hong S, Huang T, Huggins W J, Ioffe L B, Isakov S V, Jeffrey E, Jiang Z, Kafri D, Kechedzhi K, Khattar T, Kim S, Klimov P V, Korotkov A N, Kostritsa F, Landhuis D, Laptev P, Locharla A, Lucero E, Martin O, McClean J R, McEwen M, Miao K C, Mohseni M, Montazeri S, Mruczkiewicz W, Mutus J, Naaman O, Neeley M, Neill C, Niu M Y, O'Brien T E, Opremcak A, Pató B, Petukhov A, Rubin N C, Sank D, Shvarts V, Strain D, Szalay M, Villalonga B, White T C, Yao Z, Yeh P, Yoo J, Zalcman A, Neven H, Boixo S, Megrant A, Chen Y, Kelly J, Smelyanskiy V, Kitaev A, Knap M, Pollmann F, Roushan P 2021 Science 374 1237Google Scholar

    [13]

    Cai J, Anderson E, Wang C, Zhang X, Liu X, Holtzmann W, Zhang Y, Fan F, Taniguchi T, Watanabe K, Ran Y, Cao T, Fu L, Xiao D, Yao W, Xu X 2023 Nature 622 63Google Scholar

    [14]

    Zeng Y, Xia Z, Kang K, Zhu J, Knüppel P, Vaswani C, Watanabe K, Taniguchi T, Mak K F, Shan J 2023 Nature 622 69Google Scholar

    [15]

    Park H, Cai J, Anderson E, Zhang Y, Zhu J, Liu X, Wang C, Holtzmann W, Hu C, Liu Z, Taniguchi T, Watanabe K, Chu J H, Cao T, Fu L, Yao W, Chang C Z, Cobden D, Xiao D, Xu X 2023 Nature 622 74Google Scholar

    [16]

    Xu F, Sun Z, Jia T, Liu C, Xu C, Li C, Gu Y, Watanabe K, Taniguchi T, Tong B, Jia J, Shi Z, Jiang S, Zhang Y, Liu X, Li T 2023 Phys. Rev. X 13 031037Google Scholar

    [17]

    Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045Google Scholar

    [18]

    Wen J, Yu S L, Li S, Yu W, Li J X 2019 npj Quantum Mater. 4 1Google Scholar

    [19]

    Shimokawa T, Watanabe K, Kawamura H 2015 Phys. Rev. B 92 134407Google Scholar

    [20]

    Ma Z, Wang J, Dong Z Y, Zhang J, Li S, Zheng S H, Yu Y, Wang W, Che L, Ran K, Bao S, Cai Z, Čermák P, Schneidewind A, Yano S, Gardner J S, Lu X, Yu S L, Liu J M, Li S, Li J X, Wen J 2018 Phys. Rev. Lett. 120 087201Google Scholar

    [21]

    Kasahara Y, Ohnishi T, Mizukami Y, Tanaka O, Ma S, Sugii K, Kurita N, Tanaka H, Nasu J, Motome Y, Shibauchi T, Matsuda Y 2018 Nature 559 227Google Scholar

    [22]

    Scholl P, Schuler M, Williams H J, Eberharter A A, Barredo D, Schymik K N, Lienhard V, Henry L P, Lang T C, Lahaye T, Läuchli A M, Browaeys A 2021 Nature 595 233Google Scholar

    [23]

    Ebadi S, Wang T T, Levine H, Keesling A, Semeghini G, Omran A, Bluvstein D, Samajdar R, Pichler H, Ho W W, Choi S, Sachdev S, Greiner M, Vuletić V, Lukin M D 2021 Nature 595 227Google Scholar

    [24]

    Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Kaxiras E, Ashoori R C, Jarillo-Herrero P 2018 Nature 556 80Google Scholar

    [25]

    Tang E, Mei J W, Wen X G 2011 Phys. Rev. Lett. 106 236802Google Scholar

    [26]

    Neupert T, Santos L, Chamon C, Mudry C 2011 Phys. Rev. Lett. 106 236804Google Scholar

    [27]

    Kitaev A 2006 Ann. Phys. 321 2Google Scholar

    [28]

    Ghiotto A, Shih E M, Pereira G S S G, Rhodes D A, Kim B, Zang J, Millis A J, Watanabe K, Taniguchi T, Hone J C, Wang L, Dean C R, Pasupathy A N 2021 Nature 597 345Google Scholar

    [29]

    Pan H, Wu F, Sarma S D 2020 Phys. Rev. Res. 2 033087Google Scholar

  • [1] 刘恩克. 磁序与拓扑的耦合: 从基础物理到拓扑磁电子学.  , 2024, 73(1): 017103. doi: 10.7498/aps.73.20231711
    [2] 杨昆. 分数量子霍尔液体中的几何自由度及类引力子元激发.  , 2024, 73(17): 177801. doi: 10.7498/aps.73.20240994
    [3] 赖红, 任黎, 黄钟锐, 万林春. 基于多尺度纠缠重整化假设的量子网络通信资源优化方案.  , 2024, 73(23): 1-14. doi: 10.7498/aps.73.20241382
    [4] 刘钊. 莫尔超晶格中的分数化拓扑量子态.  , 2024, 73(20): 207303. doi: 10.7498/aps.73.20241029
    [5] 杨帅, 张浩, 何珂. 选区外延生长的PbTe-超导杂化纳米线: 一个可能实现拓扑量子计算的新体系.  , 2023, 72(23): 238101. doi: 10.7498/aps.72.20231603
    [6] 刘腾, 陆鹏飞, 胡碧莹, 吴昊, 劳祺峰, 边纪, 刘泱, 朱峰, 罗乐. 离子阱中以声子为媒介的多体量子纠缠与逻辑门.  , 2022, 71(8): 080301. doi: 10.7498/aps.71.20220360
    [7] 陈西浩, 夏继宏, 李孟辉, 翟福强, 朱广宇. 自旋-1/2量子罗盘链的量子相与相变.  , 2022, 71(3): 030302. doi: 10.7498/aps.71.20211433
    [8] 邵雅婷, 严凯, 吴银忠, 郝翔. 非对称自旋-轨道耦合系统的多体量子相干含时演化.  , 2021, 70(1): 010301. doi: 10.7498/aps.70.20201199
    [9] 强晓斌, 卢海舟. 磁场中拓扑物态的量子输运.  , 2021, 70(2): 027201. doi: 10.7498/aps.70.20200914
    [10] 陈西浩, 夏继宏, 李孟辉, 翟福强, 朱广宇. 自旋-1/2量子罗盘链的量子相与相变.  , 2021, (): . doi: 10.7498/aps.70.20211433
    [11] 强晓斌, 卢海舟. 磁场中拓扑物态的量子输运.  , 2020, (): . doi: 10.7498/aps.69.20200914
    [12] 叶鹏. 具有全局对称性的强关联拓扑物态的规范场论.  , 2020, 69(7): 077102. doi: 10.7498/aps.69.20200197
    [13] 陈爱民, 刘东昌, 段佳, 王洪雷, 相春环, 苏耀恒. 含有Dzyaloshinskii-Moriya相互作用的自旋1键交替海森伯模型的量子相变和拓扑序标度.  , 2020, 69(9): 090302. doi: 10.7498/aps.69.20191773
    [14] 陈西浩, 王秀娟. 一维扩展量子罗盘模型的拓扑序和量子相变.  , 2018, 67(19): 190301. doi: 10.7498/aps.67.20180855
    [15] 耿虎, 计青山, 张存喜, 王瑞. 缀饰格子中时间反演对称破缺的量子自旋霍尔效应.  , 2017, 66(12): 127303. doi: 10.7498/aps.66.127303
    [16] 赵建辉, 王海涛. 应用多尺度纠缠重整化算法研究量子自旋系统的量子相变和基态纠缠.  , 2012, 61(21): 210502. doi: 10.7498/aps.61.210502
    [17] 李耀义, 程木田, 周慧君, 刘绍鼎, 王取泉, 薛其坤. 脉冲激发三能级体系半导体量子点的单光子发射效率.  , 2006, 55(4): 1781-1786. doi: 10.7498/aps.55.1781
    [18] 雷啸霖. Cu3Au的电阻率和长程有序.  , 1982, 31(2): 262-267. doi: 10.7498/aps.31.262
    [19] 杜光庭, 何开元, 陈煜廉. 用中子衍射方法研究钒对50%铁-钴合金长程有序的影响.  , 1965, 21(6): 1304-1307. doi: 10.7498/aps.21.1304
    [20] 易孙圣, 刘益焕. 合金AgAuZn2的有序化.  , 1965, 21(4): 839-848. doi: 10.7498/aps.21.839
计量
  • 文章访问数:  2655
  • PDF下载量:  179
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-02
  • 修回日期:  2024-03-12
  • 上网日期:  2024-03-13
  • 刊出日期:  2024-04-05

/

返回文章
返回
Baidu
map