-
本文在双模Dicke模型的基础上,研究光场(模式1)与机械振子有非线性耦合的双模光机械腔中冷原子的量子相变。利用自旋相干态及变分法得到了系统基态能量的泛函。通过求解和判定稳定性,得到了相变点和基态相图。发现存在正常相和反转正常相的双稳态,超辐射相和反转正常相的共存态,以及单独存在的反转正常相。原子与两模光场相互作用强度的不同对相变点的值有较大影响,存在正常相经过相变点到超辐射相的量子相变。光-声子非线性耦合对相变点没有影响,但诱导了超辐射相的塌缩,存在一个转折点,经过转折点可以实现超辐射相到反转的正常相的量子相变。超辐射相的区域随着光子-声子耦合的增加而减小,在耦合的临界值处收缩为零,即转折点和相变点重合,并且有可能出现两个正常相之间的原子布居数的反转,光-声子的非线性耦合还产生了不稳定的非零光子态,它与超辐射态相对应。在不含机械振子时,回到双模Dicke模型的结果。In this paper, the quantum phase transition of cold atoms in a two-mode photomechanical cavity with nonlinear coupling between the optical field (mode 1) and the mechanical oscillator is studied on the basis of the two-mode Dicke model. The functional of the ground state energy of the system is obtained by spin coherent states and variational method. By solving and judging the stability, the phase transformation point and ground state phase diagram are obtained. It is found that there are bistable state of normal phase and reverse normal phase, coexistence of superradiation phase and reversed normal phase that exists alone. The values of phase transition points are greatly affected by the different intensity of interaction between atoms and two modes of light fields. There is a quantum phase transition from a normal phase through a phase transition point to a superradiant phase. The light-phonon nonlinear coupling has no effect on the phase transition point, but induces the collapse of the superradiant phase. There is a turning point through which the quantum phase transition from the superradiant phase to the reversed normal phase can be realized. The region of the superradiation phase decreases with the increase of the photon-phonon coupling, and it shrinks to zero at the critical value of the coupling, that is, the turning point and the phase transition point coincide, and there may be a reversal of the atomic population between the two normal phases. The nonlinear coupling of the light-phonon also produces an unstable non-zero photon state, which corresponds to the superradiation state. In the absence of mechanical oscillators, the results of the two-mode Dicke model are returned.
The very typical phase diagrams of g/ωa ~ ζ/ωa are shown in Fig.(a)-(d).-
Keywords:
- two model optomechanical cavity /
- light-phonon nonlinear coupling /
- quantum phase transition /
- superradiation phase collapse
-
[1] Dicke R H 1954 Phys. Rev. 93 99-110
[2] Hepp K, Lieb E H 1973 Ann. Phys. (N.Y.) 76 360-404
[3] Wang Y K, Hioe F T 1973 Phys. Rev. A 7 831-836
[4] Hioe F T 1973 Phys. Rev. A 8 1440-1445
[5] Baumann K, Guerlin C, Brennecke F, Esslinger T, 2010 Nature (London) 464 1301-1306
[6] Baumann K, Mottl R, Brennecke F, Esslinger T, 2011 Phys. Rev. Lett. 107 140402
[7] Emary C, Brandes T, 2003 Phys. Rev. Lett. 90 044101
[8] Chen G, Li J Q, Liang J Q 2006 Phys. Rev. A 74 054101
[9] Aspelmeyer M, Kippenberg T J, Marquardt F 2014 Rev. Mod. Phys. 86, 1391
[10] Brennecke F, Ritter S, Donner T, Esslinger T 2008 Science 322 235-238
[11] Gröblacher S, Hammerer K, Vanner M R, Aspelmeyer M 2009 Nature 460 724-727
[12] Anetsberger G, Arcizet O, Unterreithmeier Q P, Rivière R, Schliesser A, Weig E M, Kotthaus J P, Kippenberg T J 2009 Nat. Phys. 5 909
[13] Chan J, Alegre T P M, Safavi-Naeini A H, Hill J T, Krause A, Gröblacher S, Aspelmeyer M, Painter O 2011 Nature (London) 478 89
[14] Chen H J, Mi X W 2011 Acta Phys. Sin. 60 124206-1-124206-9 (in chinese) [陈华俊,米贤武 2011 60 124206-1-124206-9]
[15] Yan X B, Yang L, Tian X D, Liu Y M, Zhang Y 2014 Acta Phys. Sin. 63 204201-1-204201-6 (in chinese) [严晓波,杨柳,田雪冬,刘一谋,张岩 2014 63 204201-1- 204201-6]
[16] Han M, Gu K H, Liu Y M, Zhang Y, Wang X C, Tian X D, Fu C B, Cui C L 2014 Acta Phys. Sin. 63 094206-1-094206-7 (in chinese) [韩明 谷开慧 刘一谋 张岩 王晓畅 田雪冬 付长宝 崔淬砺 2014 63 094206-1-094206-7]
[17] Brooks D W C, Botter T, Schreppler S, Purdy T P, Brahms N, Stamper-Kurn D M 2012 Nature 488 476–480
[18] Ian H, Gong Z R, Liu Y X, Sun C P, Nori F 2008 Phys. Rev. A 78 013824
[19] Jiang C, Bian X T, Cui Y S, Chen G B 2016 JOSA B 33 2099-2104
[20] Wang Z M, Lian J L, Liang J Q, Yu Y M, Liu W M. 2016 Phys. Rev. A 93 033630
[21] Lian J L, Liu N, Liang J Q, Chen G, Jia S T 2013 Phys. Rev. A 88 043820
[22] Zhao X Q, Liu N, Bai X M, Liang J Q 2017Ann. Phys. 378 448-458
[23] Santos J P, Semião F L,Furuya K 2010 Phys. Rev. A 82 063801
[24] Sankey J C, Yang C, Zwickl B M, Jayich A M, Harris J G E 2010 Nat. Phys. 6 707-712
[25] Clerk A A, Marquardt F, Harris J G E 2010 Phys. Rev. Lett. 104 213603
[26] Purdy T P, Brooks D W C, Botter T, Brahms N, Ma Z Y, Stamper-Kurn D M 2010 Phys. Rev. Lett. 105 133602
[27] Wang B, Nori F, Xiang Z X 2024 Phys. Rev. Lett. 132 053601
[28] Léonard J, Morales A, Zupancic P, Esslinger T, Donner T 2017 Nature 543 87-90
[29] Léonard J, Morales A, Zupancic P, Donner T, Esslinger T 2017 Science 358 1415-1418
[30] Zhang G Q, Chen Z, You J Q 2020 Phys. Rev. A 102 032202
[31] Quezada L F, Nahmad-Achar E 2017 Phys. Rev. A 95 013849
[32] Liu N, Zhao X Q, Liang J Q 2019 Int. J. Theor. Phys. 58 558-574
[33] Zhao X Q, Zhang W H, Wang H M 2024 Acta Phys. Sin. 73 160302-1- 160302-12 (in chinese) [赵秀琴,张文慧,王红梅 2024 73 160302-1- 160302-12]
[34] Arecchi F T, Courtens E, Gilmore R, Thomas H 1972 Phys. Rev. A 6 2211-2237
[35] Fox R F 1999 Phys. Rev. A 59 3241-3255
[36] Huang H B 1991 Acta Phys. Sin. 40 1396-1401 (in chinese) [黄洪斌 1991 40 1396-1401]
[37] Zhu W S, Rabitz H 1998 Phys. Rev. A 58 4741-4748
[38] Stannigel K, Komar P, Habraken S J M, Bennett S D, Lukin M D, Zoller P, Rabl P 2012 Phys. Rev. Lett. 109 013603
[39] Bell S, Crighton J S, Fletcher R 1981 Chem. Phys. Lett. 82 122-126
[40] Vallone G, Cariolaro G, Pierobon G 2019 Phys. Rev. A 99 023817
[41] Frueholz R P, Camparo J C 1996 Phys. Rev. A 54 3499-3504
[42] Aftalion A, Mason P 2016 Phys. Rev. A 94 023616
[43] Schlittler T M, Mosseri R, Barthel T 2017 Phys. Rev. B 96 195142
[44] Deshpande A, Gorshkov A V, Fefferman B 2022 PRX Quantum 3 040327
[45] Tolkunov D, Solenov D 2007 Phys. Rev. B 75 024402
计量
- 文章访问数: 35
- PDF下载量: 2
- 被引次数: 0