Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Design and simulation analysis of spectroscopic system for synchronous atmospheric three-phase water detection based on Raman lidar

Wang Yu-Feng Zhang Jing Tang Liu Wang Qing Gao Tian-Le Song Yue-Hui Di Hui-Ge Li Bo Hua Deng-Xin

Citation:

Design and simulation analysis of spectroscopic system for synchronous atmospheric three-phase water detection based on Raman lidar

Wang Yu-Feng, Zhang Jing, Tang Liu, Wang Qing, Gao Tian-Le, Song Yue-Hui, Di Hui-Ge, Li Bo, Hua Deng-Xin
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Water is the only atmospheric parameter with three-phase states. The study on distribution and variation in three-phase water is of great scientific significance for understanding cloud microphysics, cloud precipitation physics, and water circulation, especially in the fields of artificial weather process. In the Raman lidar detection technology of three-phase water, it is necessary to solve the problem of high-spectral spectroscopic technique to ensure fine extraction of the echo signal and the detection with high signal-to-noise ratio (SNR). Considering the Raman spectrum characteristics of three-phase water, the influences of filter parameters in the Raman channels on the overlapping characteristics are theoretical simulated and discussed in detail, and the SNR is investigated as well. Regarding the fact that optimal solution can be obtained for neither overlapping nor SNR at the same time, an evaluation function method based on the multi-objective programming problem is proposed to analyze the optimal filter parameters. The results show that the minimum overlapping value and the higher system SNR can be obtained when the central wavelength and bandwidth of the filters are determined to be 397.9 nm and 3.1 nm, 403 nm and 5 nm, 407.6 nm and 0.6 nm in solid water, liquid water and water vapor channel, respectively, and thus the optimal design can be realized for synchronous detection Raman spectroscopic system for three-phase water. Further simulation results show that effective detection can reach above 3.6 km in the daytime and over 4 km on sunny days under a system factor of 1800 J·mm·min for three-phase water Raman measurement in the daytime. Furthermore, the obtained overlapping values are applied to accurate retrieval theory for three-phase water profiles. The simulated profiles of atmospheric water vapor, liquid water and ice water indicate that the water vapor, liquid water and solid water content can be increased synchronously in the cloud layer, and their content, distribution characteristics and the corresponding error are also discussed. The above results validate the feasibility of highspectral spectroscopic technique for detecting the synchronous atmospheric three-phase water, and will provide technical and theoretical support for synchronous retrieval of three-phase water by Raman lidar.
      Corresponding author: Wang Yu-Feng, wangyufeng@xaut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. U1733202, 41575027, 41627807, 41027004).
    [1]

    Jacobson M Z, Pruppacher H R, Klett J D 1998 Clim. Change 38 497

    [2]

    Plakhotnik T, Reichardt J 2017 J. Quant. Spectrosc. Radiat. Transfer. 194 58

    [3]

    Zhang Z H, Zhou Y Q 2010 Meteorol. Mon. 36 83 (in Chinese) [张志红, 周毓荃 2010 气象 36 83]

    [4]

    Su T, Feng G L 2014 Acta Phys. Sin. 63 249201 (in Chinese) [苏涛, 封国林 2014 63 249201]

    [5]

    Ge Y, Shu R, Hu Y H, Liu H 2014 Acta Phys. Sin. 63 204301 (in Chinese) [葛烨, 舒嵘, 胡以华, 刘豪 2014 63 204301]

    [6]

    Li S C, Wang D L, Li Q M, Song Y H, Liu L J, Hua D X 2016 Acta Phys. Sin. 65 143301 (in Chinese) [李仕春, 王大龙, 李启蒙, 宋跃辉, 刘丽娟, 华灯鑫 2016 65 143301]

    [7]

    Sun G D, Qin L A, Zhang S L, He F, Tan F F, Jing X, Hou Z H 2018 Acta Phys. Sin. 67 054205 (in Chinese) [孙国栋, 秦来安, 张巳龙, 何枫, 谭逢富, 靖旭, 侯再红 2018 67 054205]

    [8]

    Foth A, Pospichal B 2017 Atmos. Meas. Tech. 9 1

    [9]

    Wang Y F, Gao F, Zhu C X, He T Y, Hua D X 2015 Acta Opt. Sin. 35 0328004 (in Chinese) [王玉峰, 高飞, 朱承炫, 何廷尧, 华灯鑫 2015 光学学报 35 0328004]

    [10]

    Wang Y F, Fu Q, Zhao M N, Gao F, Di H G, Song Y H, Hua D X 2018 J. Quant. Spectrosc. Radiat. Transfer. 205 114

    [11]

    Stachlewska I S, Costa-Surós M 2017 Atmos. Res. 194 258

    [12]

    Wang H W, Hua D X, Wang Y F, Gao P, Zhao H 2013 Acta Phys. Sin. 62 120701 (in Chinese) [王红伟, 华灯鑫, 王玉峰, 高朋, 赵虎 2013 62 120701]

    [13]

    Yabuki M, Matsuda M, Nakamura T, Hayashi T, Tsuda T 2016 J. Atmos. Sol-Terr Phys. 150 21

    [14]

    Veselovskii I A, Cha H K, Kim D H, Choi S C, Lee J M 2001 Appl. Phys. B 73 739

    [15]

    Bhl J, Seifert P, Myagkov A, Ansmann A 2016 J. Atmos. Ocean. Tech. 16 1

    [16]

    Sakai T, Whiteman D N, Russo F, Turner David D, Veselovskii I A, Melfi S H, Nagai T, Mano Y 2013 J. Atmos. Ocean. Tech. 30 1337

    [17]

    Veselovskii I A, Cha H K, Kim D H, Choi S C, Lee J M 2000 Appl. Phys. B 71 113

    [18]

    Wang Z, Whiteman D N, Demoz B B, Veselovskii I A 2004 Geophys. Res. Lett. 31 121

    [19]

    Liu F C, Yi F, Jia J Y, Zhang Y P, Zhang S D, Yu C M, Tan Y 2012 Chin. Technol. Sci. 55 1224

    [20]

    Reichardt J 2014 J. Atmos. Ocean. Tech. 31 1946

    [21]

    Stillwell R A, Iii R R N, Thayer J P, Shupe M D, Turner D D 2018 Atmos. Meas. Tech. 11 1

    [22]

    Donovan D P, Klein Baltink H, Henzing J S, de Roode S R, Siebesma A P 2015 Atmos. Meas. Tech. Discuss. 8 237

    [23]

    Whiteman D N 2003 Appl. Opt. 42 2593

    [24]

    Wang K R 2012 Optimization Method (Beijing: Science Press) p156 (in Chinese) [王开荣 2012 最优化方法 (北京: 科学出版社) 第156页]

  • [1]

    Jacobson M Z, Pruppacher H R, Klett J D 1998 Clim. Change 38 497

    [2]

    Plakhotnik T, Reichardt J 2017 J. Quant. Spectrosc. Radiat. Transfer. 194 58

    [3]

    Zhang Z H, Zhou Y Q 2010 Meteorol. Mon. 36 83 (in Chinese) [张志红, 周毓荃 2010 气象 36 83]

    [4]

    Su T, Feng G L 2014 Acta Phys. Sin. 63 249201 (in Chinese) [苏涛, 封国林 2014 63 249201]

    [5]

    Ge Y, Shu R, Hu Y H, Liu H 2014 Acta Phys. Sin. 63 204301 (in Chinese) [葛烨, 舒嵘, 胡以华, 刘豪 2014 63 204301]

    [6]

    Li S C, Wang D L, Li Q M, Song Y H, Liu L J, Hua D X 2016 Acta Phys. Sin. 65 143301 (in Chinese) [李仕春, 王大龙, 李启蒙, 宋跃辉, 刘丽娟, 华灯鑫 2016 65 143301]

    [7]

    Sun G D, Qin L A, Zhang S L, He F, Tan F F, Jing X, Hou Z H 2018 Acta Phys. Sin. 67 054205 (in Chinese) [孙国栋, 秦来安, 张巳龙, 何枫, 谭逢富, 靖旭, 侯再红 2018 67 054205]

    [8]

    Foth A, Pospichal B 2017 Atmos. Meas. Tech. 9 1

    [9]

    Wang Y F, Gao F, Zhu C X, He T Y, Hua D X 2015 Acta Opt. Sin. 35 0328004 (in Chinese) [王玉峰, 高飞, 朱承炫, 何廷尧, 华灯鑫 2015 光学学报 35 0328004]

    [10]

    Wang Y F, Fu Q, Zhao M N, Gao F, Di H G, Song Y H, Hua D X 2018 J. Quant. Spectrosc. Radiat. Transfer. 205 114

    [11]

    Stachlewska I S, Costa-Surós M 2017 Atmos. Res. 194 258

    [12]

    Wang H W, Hua D X, Wang Y F, Gao P, Zhao H 2013 Acta Phys. Sin. 62 120701 (in Chinese) [王红伟, 华灯鑫, 王玉峰, 高朋, 赵虎 2013 62 120701]

    [13]

    Yabuki M, Matsuda M, Nakamura T, Hayashi T, Tsuda T 2016 J. Atmos. Sol-Terr Phys. 150 21

    [14]

    Veselovskii I A, Cha H K, Kim D H, Choi S C, Lee J M 2001 Appl. Phys. B 73 739

    [15]

    Bhl J, Seifert P, Myagkov A, Ansmann A 2016 J. Atmos. Ocean. Tech. 16 1

    [16]

    Sakai T, Whiteman D N, Russo F, Turner David D, Veselovskii I A, Melfi S H, Nagai T, Mano Y 2013 J. Atmos. Ocean. Tech. 30 1337

    [17]

    Veselovskii I A, Cha H K, Kim D H, Choi S C, Lee J M 2000 Appl. Phys. B 71 113

    [18]

    Wang Z, Whiteman D N, Demoz B B, Veselovskii I A 2004 Geophys. Res. Lett. 31 121

    [19]

    Liu F C, Yi F, Jia J Y, Zhang Y P, Zhang S D, Yu C M, Tan Y 2012 Chin. Technol. Sci. 55 1224

    [20]

    Reichardt J 2014 J. Atmos. Ocean. Tech. 31 1946

    [21]

    Stillwell R A, Iii R R N, Thayer J P, Shupe M D, Turner D D 2018 Atmos. Meas. Tech. 11 1

    [22]

    Donovan D P, Klein Baltink H, Henzing J S, de Roode S R, Siebesma A P 2015 Atmos. Meas. Tech. Discuss. 8 237

    [23]

    Whiteman D N 2003 Appl. Opt. 42 2593

    [24]

    Wang K R 2012 Optimization Method (Beijing: Science Press) p156 (in Chinese) [王开荣 2012 最优化方法 (北京: 科学出版社) 第156页]

  • [1] Shen Yong, Shen Yu-Hang, Dong Jia-Qi, Li Jia, Shi Zhong-Bing, Zong Wen-Gang, Pan Li, Li Ji-Quan. Bispectral analysis and simulation modeling of quadratic nonlinear system with specific turbulent-fluctuation-excitation-response types. Acta Physica Sinica, 2024, 73(18): 184701. doi: 10.7498/aps.73.20232013
    [2] Chen Song-Mao, Su Xiu-Qin, Hao Wei, Zhang Zhen-Yang, Wang Shu-Chao, Zhu Wen-Hua, Wang Jie. Noise reduction and 3D image restoration of single photon counting LiDAR using adaptive gating. Acta Physica Sinica, 2022, 71(10): 104202. doi: 10.7498/aps.71.20211697
    [3] Sun Ying-Lu, Duan Yan-Min, Cheng Meng-Yao, Yuan Xian-Zhang, Zhang Li, Zhang Dong, Zhu Hai-Yong. Triple wavelength-switchable lasing in yellow-green based on frequency mixing of self-Raman operation. Acta Physica Sinica, 2020, 69(12): 124201. doi: 10.7498/aps.69.20200324
    [4] Gao Fei, Nan Heng-Shuai, Huang Bo, Wang Li, Li Shi-Chun, Wang Yu-Feng, Liu Jing-Jing, Yan Qing, Song Yue-Hui, Hua Deng-Xin. Technical realization and system simulation of ultraviolet multi-mode high-spectral-resolution lidar for measuring atmospheric aerosols. Acta Physica Sinica, 2018, 67(3): 030701. doi: 10.7498/aps.67.20172036
    [5] Li Qi-Meng, Li Shi-Chun, Qin Yu-Li, Hu Xiang-Long, Zhao Jing, Song Yue-Hui, Hua Deng-Xin. Design and performance of spectroscopic filter of rotational Raman temperature lidar for absolute measurement. Acta Physica Sinica, 2018, 67(1): 014207. doi: 10.7498/aps.67.20171834
    [6] Jing Min, Hua Deng-Xin, Le Jing. Simulation of fluorescence lidar for detecting oil slick. Acta Physica Sinica, 2016, 65(7): 070704. doi: 10.7498/aps.65.070704
    [7] Li Shi-Chun, Wang Da-Long, Li Qi-Meng, Song Yue-Hui, Liu Li-Juan, Hua Deng-Xin. Pure rotational Raman lidar for absolute detection of atmospheric temperature. Acta Physica Sinica, 2016, 65(14): 143301. doi: 10.7498/aps.65.143301
    [8] Gong Xin, Hua Deng-Xin, Li Shi-Chun, Wang Jun, Shi Xiao-Jing. Design and optimization of all-fiber rotational Raman spectroscope for temperature measurement based on sampled fiber Bragg grating. Acta Physica Sinica, 2016, 65(7): 073601. doi: 10.7498/aps.65.073601
    [9] Zhao Guang-Yin, Li Ying-Hong, Liang Hua, Hua Wei-Zhuo, Han Meng-Hu. Phenomenological modeling of nanosecond pulsed surface dielectric barrier discharge plasma actuation for flow control. Acta Physica Sinica, 2015, 64(1): 015101. doi: 10.7498/aps.64.015101
    [10] Chen Hao, Hua Deng-Xin, Zhang Yi-Kun, Zhu Cheng-Xuan. A method of vertical and horizontal plus cubic spline interpolation for Mie scattering lidar profile data. Acta Physica Sinica, 2014, 63(15): 154204. doi: 10.7498/aps.63.154204
    [11] Ge Ye, Shu Rong, Hu Yi-Hua, Liu Hao. System design and performance simulation of ground-based differential absorption lidar for water-vapor measurements. Acta Physica Sinica, 2014, 63(20): 204301. doi: 10.7498/aps.63.204301
    [12] Jiang Yi-Min, Liu Mario. Hydrodynamic theory of grains, water and air. Acta Physica Sinica, 2013, 62(20): 204501. doi: 10.7498/aps.62.204501
    [13] Zhao Jun-Ying, Jin Ning-De, Gao Zhong-Ke. Detecting unstable periodic orbits from oil-gas-water three-phase slug flows. Acta Physica Sinica, 2013, 62(8): 084701. doi: 10.7498/aps.62.084701
    [14] Zhao Xiao-Feng, Huang Si-Xun. Radar sea clutter power modeling under the atmospheric duct propagation conditions. Acta Physica Sinica, 2013, 62(9): 099204. doi: 10.7498/aps.62.099204
    [15] Yang Xiao-Fang, Mao Wei, Fu Qiang. Modeling of bicycle flow based on dynamic floor field and cellular automata. Acta Physica Sinica, 2013, 62(24): 240511. doi: 10.7498/aps.62.240511
    [16] He Ke-Jing, Zhang Jin-Cheng, Zhou Xiao-Qiang. Simulation of the projectile dynamics in granular media. Acta Physica Sinica, 2013, 62(13): 130204. doi: 10.7498/aps.62.130204
    [17] Chen Liang, Guo Ren-Yong, Ta Na. Simulation and experimental results of evacuation of pedestrian flow in a classroom with two exits. Acta Physica Sinica, 2013, 62(5): 050506. doi: 10.7498/aps.62.050506
    [18] Wang Hong-Wei, Hua Deng-Xin, Wang Yu-Feng, Gao Peng, Zhao Hu. Design and analysis of new spectroscopic system of Raman lidar for detection of atmospheric water vapor. Acta Physica Sinica, 2013, 62(12): 120701. doi: 10.7498/aps.62.120701
    [19] Wang Shao-Lin, Su Jia, Zhao Pei-Tao, Cao Kai-Fa, Hu Shun-Xing, Wei He-Li, Tan Kun, Hu Huan-Ling. A pure rotational Raman-lidar based on three-stage Fabry-Perot etalons for monitoring atmospheric temperature. Acta Physica Sinica, 2008, 57(6): 3941-3947. doi: 10.7498/aps.57.3941
    [20] Zhang Xiao_Ping, Zhu Jian_Lin, Wen Ze_Jun, Yue Zhou, Liu Sha_Sha. Study of a novel matrix converter based on double-loop control strategy. Acta Physica Sinica, 2007, 56(5): 2523-2528. doi: 10.7498/aps.56.2523
Metrics
  • Abstract views:  6346
  • PDF Downloads:  73
  • Cited By: 0
Publishing process
  • Received Date:  10 April 2018
  • Accepted Date:  13 September 2018
  • Published Online:  20 November 2019

/

返回文章
返回
Baidu
map