-
为实现转动拉曼激光雷达的绝对测量温度技术,设计并测试了多通道转动拉曼分光系统.提出了一阶闪耀光栅与光纤Bragg光栅组成的两级并行多通道拉曼分光系统,优化了其核心级联器件(微米级光纤阵列)的参数及光路结构;仿真分析了一级分光系统的分光光路,转动拉曼谱线最大离心伸缩量约为0.0031 nm,离心伸缩比为0.69%;实验测试表明一级分光系统各转动拉曼通道的通道系数均在0.75以上,提取到拉曼光谱的实测中心波长与理论值的最大偏差约为0.0398 nm,偏离度为8.86%,可提供对弹性散射信号27 dB以上的有效抑制,结合已有光纤Bragg光栅二级分光实现高达62 dB弹性散射的抑制效果,可以实现对单条偶转动量子数转动拉曼谱线的精细光谱提取.Rotational Raman temperature lidar for absolute measurement is an important method to directly detect the atmospheric temperature profile by using active remote sensing technology. Compared with the rotational Raman temperature relative measurement, the absolute measurement can avoid the systematic error caused by the calibration process, but its high-precision requirements of rotational Raman spectroscopic filter restrict the development of absolute measurement technique for atmosphere temperature. In order to achieve the absolute measurement technique of rotational Raman temperature lidar, the fine resolution of single rotational Raman line and the effective suppression 60-70 dB for the elastic scattering signal are the key factors for directly retrieving the atmospheric temperature by using the relationship between the single rotational Raman line and temperature. Based on the operational principle of grating, a two-stage parallel multi-channel Raman spectroscopic filter with one-order blazed grating and fiber Bragg grating is designed, and the parameters and optical path structure of the core cascade device (micron-level fiber array) are optimized. The optical path of the primary spectroscope is simulated, the wavelength difference between the rotational Raman lines of adjacent even rotational quantum numbers of nitrogen molecule (N2) gradually decreases from 0.4506 nm to 0.4475 nm. Compared with the average of approximately 0.4494 nm, its floating interval is -0.0012-+0.0019 nm, and the maximum centrifugal distortion of the rotational Raman spectra is approximately 0.0031 nm, which means that the centrifugal distortion ratio is 0.69%. Under the different values of incident angle , the diffraction position difference between adjacent rotational Raman lines varies from 124.43 m to 125.51 m, with a variation interval of -0.57-+0.51 m compared with a fixed value of 125 m. In order to test the matching consistency between rotational Raman spectra and the multi-channel fiber array, and to obtain the out-of-band suppression and channel coefficient of each fiber channel, an experimental system which consists of a first-order blazed grating, a convex lens and a fiber array is set up, and the atmospheric echo signal is simulated by using a broadband light-source and a semiconductor laser (LD). The experimental results show that the channel coefficient of the rotational Raman channels of the primary spectroscope is above 0.75, and the maximum deviation between the measured wavelength of extracted spectrum and the theoretical value is approximately 0.0398 nm, which means the the deviation degree is 8.86%. Each channel can provide more than 27 dB effective suppression to elastic scattering signal, and then by combining with the second spectroscope of fiber Bragg grating, the suppression at least is up to 62 dB. Therefore we can fine extract single rotational Raman line of even rotational quantum number.
-
Keywords:
- temperature lidar of measurement /
- rotational Raman spectra /
- first-order blazed grating /
- multi-channel fiber array
[1] Li Y J, Song S L, Li F Q, Cheng X W, Chen Z W, Liu L M, Yang Y, Gong S S 2015 Chin. J. Geophys. 58 313(in Chinese) [李亚娟, 宋沙磊, 李发泉, 程学武, 陈振威, 刘林美, 杨勇, 龚顺生 2015 地球 58 313]
[2] Yang J, Liu Q Q, Dai W, Mao X L, Zhang J H, Li M 2016 Acta Phys. Sin. 65 094209(in Chinese) [杨杰, 刘清惓, 戴伟, 冒晓莉, 张加宏, 李敏 2016 65 094209]
[3] Cooney J 1972 J. Apll. Meteorol. 11 108
[4] Hua D X, Uchida M, Kobayashi T 2005 Appl. Opt. 44 1305
[5] Shi J L, Guo P F, Huang Y, Qian J C, Wang H P, Liu J, He X D 2015 Acta Phys. Sin. 64 024215(in Chinese) [史久林, 郭鹏峰, 黄育, 钱佳成, 王泓鹏, 刘娟, 何兴道 2015 64 024215]
[6] Hua D X, Song X Q 2008 Infrar. Laser Eng. 38 21(in Chinese) [华灯鑫, 宋小全 2008 红外与激光工程 38 21]
[7] Li S C, Hua D X, Hu L L, Yan Q, Tian X Y 2014 Spectrosc. Lett. 47 244
[8] Arshinov Y, Bobrovnikov S, Serikov I, Ansmann A, Wandinger U, Althausen D, Mattis I, Mller D 2005 Appl. Opt. 44 3593
[9] Balin I, Serikov I, Bobrovnikov S, Simeonov V, Calpini B, Arshinov Y, van den Bergh H 2004 Appl. Phys.. 9 775
[10] Chen S, Qiu Z, Zhang Y, Chen H, Wang Y 2011 J. Quant. Spectrosc. Radiat. 112 304
[11] Su J, Zhang Y C, Zhao Y F, Liu Y L, Hong G L, Zhao P T, Qu K F, Xie J 2007 Chin. J. Lasers 34 94(in Chinese) [苏嘉, 张寅超, 赵曰峰, 刘玉丽, 洪光烈, 赵培涛, 屈凯峰, 谢军 2007 红外与激光工程 34 94]
[12] Behrendt A, Nakamura T, Tsuda T 2004 Appl. Opt. 43 2930
[13] Zeyn J, Lahmann W, Weitkamp C 1996 Opt. Lett. 21 1301
[14] Li S C, Hua D X, Wang Y F, Gao F, Yan Q, Shi X J 2015 J. Quant. Spectrosc. Radiat.. 153 113
[15] Mao J D, Hua D X, Huo L L, Wang Y F, Wang L 2010 Acta Optic. Sin. 30 8(in Chinese) [毛建东, 华灯鑫, 胡辽林, 王玉峰, 汪丽 2010 光学学报 30 8]
[16] Radlach M, Behrendt A, Wulfmeyer V 2008 Atmos. Chem. Phys. 8 159
[17] Li S C, Wang D L, Li Q M, Song Y H, Liu L J, Hua D X 2016 Acta Phys. Sin. 65 143301(in Chinese) [李仕春, 王大龙, 李启蒙, 宋跃辉, 刘丽娟, 华灯鑫 2016 65 143301]
[18] Norton E G, Povey I M, South A M, Jones R L 2001 Proc. SPIE 4153 657
[19] Li S C, Hua D X, Wang L L, Song Y H 2013 Optik 124 1450
[20] Li S C, Hua D X, Song Y H, Tian X Y 2012 Acta Photon. Sin. 41 1053(in Chinese) [李仕春, 华灯鑫, 宋跃辉, 田小雨 2012 光子学报 41 1053]
[21] Hoskins L C 1975 J. Chem. Educ. 52 568
-
[1] Li Y J, Song S L, Li F Q, Cheng X W, Chen Z W, Liu L M, Yang Y, Gong S S 2015 Chin. J. Geophys. 58 313(in Chinese) [李亚娟, 宋沙磊, 李发泉, 程学武, 陈振威, 刘林美, 杨勇, 龚顺生 2015 地球 58 313]
[2] Yang J, Liu Q Q, Dai W, Mao X L, Zhang J H, Li M 2016 Acta Phys. Sin. 65 094209(in Chinese) [杨杰, 刘清惓, 戴伟, 冒晓莉, 张加宏, 李敏 2016 65 094209]
[3] Cooney J 1972 J. Apll. Meteorol. 11 108
[4] Hua D X, Uchida M, Kobayashi T 2005 Appl. Opt. 44 1305
[5] Shi J L, Guo P F, Huang Y, Qian J C, Wang H P, Liu J, He X D 2015 Acta Phys. Sin. 64 024215(in Chinese) [史久林, 郭鹏峰, 黄育, 钱佳成, 王泓鹏, 刘娟, 何兴道 2015 64 024215]
[6] Hua D X, Song X Q 2008 Infrar. Laser Eng. 38 21(in Chinese) [华灯鑫, 宋小全 2008 红外与激光工程 38 21]
[7] Li S C, Hua D X, Hu L L, Yan Q, Tian X Y 2014 Spectrosc. Lett. 47 244
[8] Arshinov Y, Bobrovnikov S, Serikov I, Ansmann A, Wandinger U, Althausen D, Mattis I, Mller D 2005 Appl. Opt. 44 3593
[9] Balin I, Serikov I, Bobrovnikov S, Simeonov V, Calpini B, Arshinov Y, van den Bergh H 2004 Appl. Phys.. 9 775
[10] Chen S, Qiu Z, Zhang Y, Chen H, Wang Y 2011 J. Quant. Spectrosc. Radiat. 112 304
[11] Su J, Zhang Y C, Zhao Y F, Liu Y L, Hong G L, Zhao P T, Qu K F, Xie J 2007 Chin. J. Lasers 34 94(in Chinese) [苏嘉, 张寅超, 赵曰峰, 刘玉丽, 洪光烈, 赵培涛, 屈凯峰, 谢军 2007 红外与激光工程 34 94]
[12] Behrendt A, Nakamura T, Tsuda T 2004 Appl. Opt. 43 2930
[13] Zeyn J, Lahmann W, Weitkamp C 1996 Opt. Lett. 21 1301
[14] Li S C, Hua D X, Wang Y F, Gao F, Yan Q, Shi X J 2015 J. Quant. Spectrosc. Radiat.. 153 113
[15] Mao J D, Hua D X, Huo L L, Wang Y F, Wang L 2010 Acta Optic. Sin. 30 8(in Chinese) [毛建东, 华灯鑫, 胡辽林, 王玉峰, 汪丽 2010 光学学报 30 8]
[16] Radlach M, Behrendt A, Wulfmeyer V 2008 Atmos. Chem. Phys. 8 159
[17] Li S C, Wang D L, Li Q M, Song Y H, Liu L J, Hua D X 2016 Acta Phys. Sin. 65 143301(in Chinese) [李仕春, 王大龙, 李启蒙, 宋跃辉, 刘丽娟, 华灯鑫 2016 65 143301]
[18] Norton E G, Povey I M, South A M, Jones R L 2001 Proc. SPIE 4153 657
[19] Li S C, Hua D X, Wang L L, Song Y H 2013 Optik 124 1450
[20] Li S C, Hua D X, Song Y H, Tian X Y 2012 Acta Photon. Sin. 41 1053(in Chinese) [李仕春, 华灯鑫, 宋跃辉, 田小雨 2012 光子学报 41 1053]
[21] Hoskins L C 1975 J. Chem. Educ. 52 568
计量
- 文章访问数: 6724
- PDF下载量: 169
- 被引次数: 0