搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

紫外域多纵模高光谱分辨率激光雷达探测气溶胶的技术实现和系统仿真

高飞 南恒帅 黄波 汪丽 李仕春 王玉峰 刘晶晶 闫庆 宋跃辉 华灯鑫

引用本文:
Citation:

紫外域多纵模高光谱分辨率激光雷达探测气溶胶的技术实现和系统仿真

高飞, 南恒帅, 黄波, 汪丽, 李仕春, 王玉峰, 刘晶晶, 闫庆, 宋跃辉, 华灯鑫

Technical realization and system simulation of ultraviolet multi-mode high-spectral-resolution lidar for measuring atmospheric aerosols

Gao Fei, Nan Heng-Shuai, Huang Bo, Wang Li, Li Shi-Chun, Wang Yu-Feng, Liu Jing-Jing, Yan Qing, Song Yue-Hui, Hua Deng-Xin
PDF
导出引用
  • 多纵模高光谱分辨率激光雷达是一种新型的高光谱分辨率激光雷达.本文在研究典型高功率Nd:YAG脉冲激光器的多纵模模式及其在大气中传输的气溶胶米散射和瑞利散射光谱的基础上,设计紫外域多纵模高光谱分辨率激光雷达系统,采用窄带干涉滤光片滤除太阳背景光的影响,设计可调谐马赫-曾德尔干涉仪,分离提取多纵模激光回波中的气溶胶米散射和瑞利散射光谱,并利用马赫-曾德尔干涉仪双通道输出的互补性原理,精确反演气溶胶光学参量.系统仿真结果表明,所设计的紫外域多纵模高光谱分辨率激光雷达能够实现10 km高度内的气溶胶光学参量精细探测.
    Multi-mode high-spectral-resolution lidar is a new concept of high-spectral-resolution lidar, which uses the multiple-longitudinal-mode pulsed laser rather than the single frequency laser. In this paper, we analyze the multiple longitudinal mode and its spectral distribution of a typical Nd:YAG laser, and calculate its corresponding Mie scattering and Rayleigh scattering spectra, which are a convolution between the spectral distribution of multiple-longitudinal-mode laser pulse and that of the Mie and Rayleigh scattering excited by a single frequency laser pulse. According to the spectral analyses of the elastic lidar returns, we design an ultraviolet multi-mode high-spectral-resolution lidar, in which a high-power non-seeded Nd:YAG pulsed laser at the third harmonic 355 nm wavelength is used as a transmitter, and a Cassegrain telescope serves as a receiver. In the polychromator, a narrow band interfering filter is selected to block the solar background, and a tunable Mach-Zehnder interferometer (MZI) is designed to separate the aerosol Mie scattering signals from the molecular Rayleigh scattering signals excited by the multi-mode pulsed laser. The MZI is composed of a roof mirror mounted on a piezoelectric ceramic and two beam splitters. The optical path difference of the MZI can be adjusted by the piezoelectric ceramic, while its optimum value should make the correspondence between the free spectral range of MZI and the interval between longitudinal modes of Nd:YAG pulsed laser. The photomultiplier tube is selected as a detector, whose output is the convolution between the transmission function of MZI and the Mie and Rayleigh signals excited by the multi-longitudinal mode laser pulse. In the practical experiment, the optimal optical path difference of MZI can be determined by using envelope analysis. For the transmitter laser, when one channel has a maximum output signal and the other has a minimum output, the center wavelength of each longitudinal mode of laser is locked in the optimal optical path difference. The channel of MZI with the maximum output is to pass the Mie scattering signal, while the channel with the minimum output is to block the Mie scattering signal. The aerosol optical characteristics are retrievable by using the complementary properties of the two output channels of MZI. In order to verify the feasibility of the multi-mode high spectral resolution lidar, the system simulation is carried out by using the real atmospheric model and the designed lidar system parameters. The simulation results show that the designed ultraviolet multi-mode high-spectral-resolution lidar can realize the accurate measurement of aerosol within a height of 10 km.
      通信作者: 华灯鑫, dengxinhua@xaut.edu.cn
    • 基金项目: 国家自然科学基金(批准号:41775035,41627807,41305023)、中国博士后基金(批准号:2014M560799)和陕西省科技计划项目(批准号:2014KJXX-64,2014JQ5174)资助的课题.
      Corresponding author: Hua Deng-Xin, dengxinhua@xaut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 41775035, 41627807, 41305023), the China Postdoctoral Science Foundation (Grant No. 2014M560799), and the Science and Technology Program of Shaanxi Province, China (Grant Nos. 2014KJXX-64, 2014JQ5174).
    [1]

    Mao J T, Zhang J H, Wang M H 2002 Acta Meteorolog. Sin. 60 625 (in Chinese) [毛节泰, 张军华, 王美华 2002 气象学报 60 625]

    [2]

    Cheng C L, Wang G H, Zhou B H, Meng J J, Liu J J, Cao J J, Xiao S 2013 Atmos. Environ. 81 443

    [3]

    Andreae M O, Rosenfeld D 2008 Earth-Sci. Rev. 89 13

    [4]

    Yu H B, Liu S C, Dickinson R E 2002 J. Geophys. Res. 107 4142

    [5]

    James D K 1981 Appl. Opt. 20 211

    [6]

    Fiocco G, Dewolf J B 1968 J. Atmos. Sci. 25 488

    [7]

    Zhao M, Xie C B, Zhong Z Q, Wang B X, Wang Z Z, Dai P D, Shang Z, Tan M, Liu D, Wang Y J 2015 J. Opt. Soc. Korea 19 695

    [8]

    Cheng Z T, Liu D, Zhou Y D, Yang Y Y, Luo J, Zhang Y P, Shen Y B, Liu C, Bai J, Wang K W, Su L, Yang L M 2016 Opt. Lett. 41 3916

    [9]

    Shimizu H, Lee S A, She C Y 1983 Appl. Opt. 22 1373

    [10]

    Hair J W, Caldwell L M, Krueger D A, She C Y 2001 Appl. Opt. 40 5280

    [11]

    Liu J T, Chen W B, Song X Q 2010 Acta Opt. Sin. 30 1548 (in Chinese) [刘金涛, 陈卫标, 宋小全 2010 光学学报 30 1548]

    [12]

    Su W Y, Schuster G L, Loeb N G, Rogers R R, Ferrare R A, Hostetler C A, Hair J W, Obland M D 2008 J. Geophy. Res. Atmos. 113 202

    [13]

    Rogers R R, Hostetler C A, Hair J W, Ferrare R A, Liu Z, Obland M D, Harper D B, Cook A L, Powell K A, Vaughan M A, Winker D M 2011 Atmos. Chem. Phys. 11 1295

    [14]

    Hoffman D S, Repasky K S, Reagan J A, Carlsten J L 2012 Appl. Opt. 51 6233

    [15]

    Imaki M, Takegoshi Y, Kobayashi T 2005 Jpn. J. Appl. Phys. 44 3063

    [16]

    Di H G, Zhang Z F, Hua H B, Zhang J Q, Hua D X, Wang Y F, He T Y 2017 Opt. Express 25 5068

    [17]

    Hua D X, Uchida M, Kobayashi T 2004 Opt. Lett. 29 1063

    [18]

    Jin Y, Sugimoto N, Nishizawa T, Ristori P, Otero L 2016 Proceeding of the 27th International Laser Radar Conference New York City, USA, July 5-10, 2015 p02006

    [19]

    Ristori P, Otero L, Jin Y, Sugimoto N, Nishizawa T, Quel E 2016 Proceeding of the 27th International Laser Radar Conference New York City, USA, July 5-10, 2015 p06005

    [20]

    Cheng Z T, Liu D, Zhang Y P, Liu C, Bai J, Wang D, Wang N C, Zhou Y D, Luo J, Yang Y Y, Shen Y B, Su L, Yang L M 2017 Opt. Express 25 979

    [21]

    Liu Z Y, Kobayashi T 1996 Opt. Rev. 3 47

  • [1]

    Mao J T, Zhang J H, Wang M H 2002 Acta Meteorolog. Sin. 60 625 (in Chinese) [毛节泰, 张军华, 王美华 2002 气象学报 60 625]

    [2]

    Cheng C L, Wang G H, Zhou B H, Meng J J, Liu J J, Cao J J, Xiao S 2013 Atmos. Environ. 81 443

    [3]

    Andreae M O, Rosenfeld D 2008 Earth-Sci. Rev. 89 13

    [4]

    Yu H B, Liu S C, Dickinson R E 2002 J. Geophys. Res. 107 4142

    [5]

    James D K 1981 Appl. Opt. 20 211

    [6]

    Fiocco G, Dewolf J B 1968 J. Atmos. Sci. 25 488

    [7]

    Zhao M, Xie C B, Zhong Z Q, Wang B X, Wang Z Z, Dai P D, Shang Z, Tan M, Liu D, Wang Y J 2015 J. Opt. Soc. Korea 19 695

    [8]

    Cheng Z T, Liu D, Zhou Y D, Yang Y Y, Luo J, Zhang Y P, Shen Y B, Liu C, Bai J, Wang K W, Su L, Yang L M 2016 Opt. Lett. 41 3916

    [9]

    Shimizu H, Lee S A, She C Y 1983 Appl. Opt. 22 1373

    [10]

    Hair J W, Caldwell L M, Krueger D A, She C Y 2001 Appl. Opt. 40 5280

    [11]

    Liu J T, Chen W B, Song X Q 2010 Acta Opt. Sin. 30 1548 (in Chinese) [刘金涛, 陈卫标, 宋小全 2010 光学学报 30 1548]

    [12]

    Su W Y, Schuster G L, Loeb N G, Rogers R R, Ferrare R A, Hostetler C A, Hair J W, Obland M D 2008 J. Geophy. Res. Atmos. 113 202

    [13]

    Rogers R R, Hostetler C A, Hair J W, Ferrare R A, Liu Z, Obland M D, Harper D B, Cook A L, Powell K A, Vaughan M A, Winker D M 2011 Atmos. Chem. Phys. 11 1295

    [14]

    Hoffman D S, Repasky K S, Reagan J A, Carlsten J L 2012 Appl. Opt. 51 6233

    [15]

    Imaki M, Takegoshi Y, Kobayashi T 2005 Jpn. J. Appl. Phys. 44 3063

    [16]

    Di H G, Zhang Z F, Hua H B, Zhang J Q, Hua D X, Wang Y F, He T Y 2017 Opt. Express 25 5068

    [17]

    Hua D X, Uchida M, Kobayashi T 2004 Opt. Lett. 29 1063

    [18]

    Jin Y, Sugimoto N, Nishizawa T, Ristori P, Otero L 2016 Proceeding of the 27th International Laser Radar Conference New York City, USA, July 5-10, 2015 p02006

    [19]

    Ristori P, Otero L, Jin Y, Sugimoto N, Nishizawa T, Quel E 2016 Proceeding of the 27th International Laser Radar Conference New York City, USA, July 5-10, 2015 p06005

    [20]

    Cheng Z T, Liu D, Zhang Y P, Liu C, Bai J, Wang D, Wang N C, Zhou Y D, Luo J, Yang Y Y, Shen Y B, Su L, Yang L M 2017 Opt. Express 25 979

    [21]

    Liu Z Y, Kobayashi T 1996 Opt. Rev. 3 47

  • [1] 刘厚通, 毛敏娟. 一种无需定标的地基激光雷达气溶胶消光系数精确反演方法.  , 2019, 68(7): 074205. doi: 10.7498/aps.68.20181825
    [2] 王倩, 毕研盟, 杨忠东. 气溶胶对大气CO2短波红外遥感探测影响的模拟分析.  , 2018, 67(3): 039202. doi: 10.7498/aps.67.20171993
    [3] 黄民双, 马鹏, 刘晓晨. 高频共振预探测多脉冲激光测距方法.  , 2018, 67(7): 074202. doi: 10.7498/aps.67.20172079
    [4] 王玉峰, 张晶, 汤柳, 王晴, 高天乐, 宋跃辉, 狄慧鸽, 李博, 华灯鑫. 基于拉曼激光雷达的大气三相态水同步精细探测分光系统的设计与仿真分析.  , 2018, 67(22): 224205. doi: 10.7498/aps.67.20180644
    [5] 钟文婷, 刘君, 华灯鑫, 侯海彦, 晏克俊. 多波长发光二极管光源雷达系统与近地面低层大气气溶胶探测.  , 2018, 67(18): 184208. doi: 10.7498/aps.67.20180721
    [6] 晏春回, 王挺峰, 张合勇, 吕韬, 吴世松. 近距离激光外差探测光学极限位移分辨率.  , 2017, 66(23): 234208. doi: 10.7498/aps.66.234208
    [7] 狄慧鸽, 华杭波, 张佳琪, 张战飞, 华灯鑫, 高飞, 汪丽, 辛文辉, 赵恒. 高光谱分辨率激光雷达鉴频器的设计与分析.  , 2017, 66(18): 184202. doi: 10.7498/aps.66.184202
    [8] 李仕春, 王大龙, 李启蒙, 宋跃辉, 刘丽娟, 华灯鑫. 绝对探测大气温度的纯转动拉曼激光雷达系统.  , 2016, 65(14): 143301. doi: 10.7498/aps.65.143301
    [9] 饶志敏, 华灯鑫, 何廷尧, 乐静. 基于本征荧光的生物气溶胶测量激光雷达性能.  , 2016, 65(20): 200701. doi: 10.7498/aps.65.200701
    [10] 葛烨, 舒嵘, 胡以华, 刘豪. 大气水汽探测地基差分吸收激光雷达系统设计与性能仿真.  , 2014, 63(20): 204301. doi: 10.7498/aps.63.204301
    [11] 狄慧鸽, 侯晓龙, 赵虎, 阎蕾洁, 卫鑫, 赵欢, 华灯鑫. 多波长激光雷达探测多种天气气溶胶光学特性与分析.  , 2014, 63(24): 244206. doi: 10.7498/aps.63.244206
    [12] 王红伟, 华灯鑫, 王玉峰, 高朋, 赵虎. 水汽探测拉曼激光雷达的新型光谱分光系统设计与分析.  , 2013, 62(12): 120701. doi: 10.7498/aps.62.120701
    [13] 刘厚通, 陈良富, 苏林. Fernald前向积分用于机载激光雷达气溶胶后向散射系数反演的理论研究.  , 2011, 60(6): 064204. doi: 10.7498/aps.60.064204
    [14] 司福祺, 谢品华, 窦科, 詹铠, 刘宇, 徐晋, 刘文清. 被动多轴差分吸收光谱大气气溶胶光学厚度监测方法研究.  , 2010, 59(4): 2867-2872. doi: 10.7498/aps.59.2867
    [15] 张改霞, 赵曰峰, 张寅超, 赵培涛. 激光雷达白天探测大气边界层气溶胶.  , 2008, 57(11): 7390-7395. doi: 10.7498/aps.57.7390
    [16] 韩 永, 王体健, 饶瑞中, 王英俭. 大气气溶胶物理光学特性研究进展.  , 2008, 57(11): 7396-7407. doi: 10.7498/aps.57.7396
    [17] 左浩毅, 杨经国. 基于气溶胶光学厚度反演大气气溶胶尺度分布.  , 2007, 56(10): 6132-6136. doi: 10.7498/aps.56.6132
    [18] 洪光烈, 张寅超, 赵曰峰, 邵石生, 谭 锟, 胡欢陵. 探测大气中CO2的Raman激光雷达.  , 2006, 55(2): 983-987. doi: 10.7498/aps.55.983
    [19] 司福祺, 刘建国, 谢品华, 张玉钧, 窦 科, 刘文清. 差分吸收光谱技术监测大气气溶胶粒谱分布.  , 2006, 55(6): 3165-3169. doi: 10.7498/aps.55.3165
    [20] 陶荣甲. 从光波的衰减测量决定大气气溶胶的谱分布.  , 1980, 29(2): 161-172. doi: 10.7498/aps.29.161
计量
  • 文章访问数:  6737
  • PDF下载量:  164
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-09-14
  • 修回日期:  2017-11-06
  • 刊出日期:  2018-02-05

/

返回文章
返回
Baidu
map