Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Bispectral analysis and simulation modeling of quadratic nonlinear system with specific turbulent-fluctuation-excitation-response types

Shen Yong Shen Yu-Hang Dong Jia-Qi Li Jia Shi Zhong-Bing Zong Wen-Gang Pan Li Li Ji-Quan

Citation:

Bispectral analysis and simulation modeling of quadratic nonlinear system with specific turbulent-fluctuation-excitation-response types

Shen Yong, Shen Yu-Hang, Dong Jia-Qi, Li Jia, Shi Zhong-Bing, Zong Wen-Gang, Pan Li, Li Ji-Quan
cstr: 32037.14.aps.73.20232013
PDF
HTML
Get Citation
  • There exists a kind of quadratic nonlinear system with specific type of turbulent fluctuation excitation in nature, which belongs to a special non-Gaussian input signal system. Its characteristic is that the input signal spectrum is generated by turbulent fluctuations, and the power spectrum distribution of this turbulence fluctuation signal is close to Gaussian distribution. Starting with the work of Choi et al. (1985 J. Sound Vib. 99 309) and Kim et al. [1987 IEEE J. Ocean. Eng. OE-12 568), we extend the simulation of a specific turbulent fluctuation excited response-type quadratic nonlinear system represented by the wave excited mooring ship response, and fully develop the internal development of turbulence based on bispectral analysis technology. We also extend the simulation system and conduct systematic modeling analysis. The complete iterative method [2020 Phys. Scr. 95 055202] is used to solve the model, and calculate the linear transfer function and quadratic nonlinear transfer function. The comparison of simulation and modeling results with the real systems and their models confirms the correctness of the results from system simulation, system modeling, and model solving. The results obtained are all in line with expectations. The coherence analysis shows that the quadratic coherence of the random wave-ship swaying system is much greater than the linear coherence, but the linear coherence of the fully developed turbulence is greater for the near Gaussian input type. The reverse computation verification or comparison with real systems indicates that the turbulence simulation and system modeling method in this work have good accuracy and high efficiency in solving algorithms, and the research results can be effectively applied to the model description and system analysis of the quadratic nonlinear systems related to specific turbulent fluctuation excitation response.
      Corresponding author: Shen Yong, sheny@swip.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12075077, 12175055) and the National Key R&D Program of China (Grant Nos. 2019YFE03050003, 2017YFE0301200).
    [1]

    Choi D, Miksad R W, Powers E J 1985 J. Sound Vib. 99 309Google Scholar

    [2]

    Kim K I, Powers E J, Ritz Ch P, Miksad R W, Fischer F J 1987 IEEE J. Ocean. Eng. OE-12 568Google Scholar

    [3]

    Cherneva Z, Soares C G 2008 Appl. Ocean Res. 30 215Google Scholar

    [4]

    Howard R S, Finneran J J, Ridgway S H 2006 Anesth. Analg. 103 626Google Scholar

    [5]

    Zhang J, Benoit M, Kimmoun O, Chabchoub A, Hsu H C 2019 Fluids 4 99Google Scholar

    [6]

    Zhang S G, Lian J J, Li J X, Liu F, Ma B 2022 Ocean Eng. 264 112473Google Scholar

    [7]

    Smith D E, Powers E J 1973 Phys. Fluids 16 1373Google Scholar

    [8]

    Hasegawa A, Maclennan C G 1979 Phys. Fluids 22 2122Google Scholar

    [9]

    Schmidt O T 2020 Nonlinear Dynam. 102 2479Google Scholar

    [10]

    Cui G, Jacobi I 2021 Phys. Rev. Fluids 6 014604Google Scholar

    [11]

    O’Brien M J, Burkhart B, Shelley M J 2022 Astrophys. J. 930 149Google Scholar

    [12]

    Unnikrishnan S, Gaitonde D V 2020 J. Fluid Mech. 905 A25Google Scholar

    [13]

    Enugonda R, Anandan V K, Ghosh B 2023 J. Electromagnet. Wave. 37 69Google Scholar

    [14]

    Ge Z, Liu P C 2007 Ann. Geophys. 25 1253Google Scholar

    [15]

    Kim Y C, Powers E J 1979 IEEE Trans. Plasma Sci. PS-7 120Google Scholar

    [16]

    Smith D E, Powers E J, Caldwell G S 1974 IEEE Trans. Plasma Sci. PS-2 263Google Scholar

    [17]

    Manz P, Ramisch M, Stroth U, Naulin V, Scott B D 2008 Plasma Phys. Contr. Fusion 50 035008Google Scholar

    [18]

    Manz P, Ramisch M, Stroth U 2009 Phys. Rev. Lett. 103 165004Google Scholar

    [19]

    Shen Y, Shen Y H, Dong J Q, Zhao K J, Shi Z B, Li J Q 2022 Chin. Phys. B 31 065206Google Scholar

    [20]

    Shen Y, Dong J Q, Shi Z B, Nagayama Y, Hirano Y, Yambe K, Yamaguchi S, Zhao K J, Li J Q 2019 Nucl. Fusion 59 044001Google Scholar

    [21]

    Kim Y C, Wong W F, Powers E J, Roth J R 1979 Proc. IEEE 67 428Google Scholar

    [22]

    Hong J Y, Kim Y C, Powers E J 1980 Proc. IEEE 68 1026Google Scholar

    [23]

    Ritz Ch P, Powers E J 1986 Physica D 20 320Google Scholar

    [24]

    Ritz C P, Powers E J, Miksad R W, Solis R S 1988 Phys. Fluids 31 3577Google Scholar

    [25]

    Ritz Ch P, Powers E J, Bengtson R D 1989 Phys. Fluids B 1 153Google Scholar

    [26]

    Kim J S, Durst R D, Fonck R J, Fernandez E, Ware A, Terry P W 1996 Phys. Plasmas 3 3998Google Scholar

    [27]

    Shen Y H, Li J Y, Li T, Li J 2020 Phys. Scr. 95 055202Google Scholar

    [28]

    Shen Y H, Li J, Li T 2020 J. Phys. Soc. Jpn. 89 044501Google Scholar

    [29]

    Hasegawa A, Mimma K 1978 Phys. Fluids 21 87Google Scholar

    [30]

    Proakis J G, Manolakis D G 2006 Digital Signal Processing-Principles, Algorithem, and Applications (4th Ed.) (Beijing: Electronic Industry Press

    [31]

    Dolgikh G I, Gromasheva O S, Dolgikh S G, Plotnikov A A 2021 J. Mar. Sci. Eng. 9 861Google Scholar

    [32]

    Xu M, Tynan G R, Holland C, Yan Z, Muller S H, Yu J H 2009 Phys. Plasmas 16 042312Google Scholar

  • 图 1  系泊船舶在单向不规则随机海洋中的摇摆运动 (a) 随机海浪波高记录; (b) 入射海浪的自功率谱; (c) 系泊配置; (d) 系泊船舶摇摆响应的时间记录; (e) 系泊船舶摇摆响应的自功率谱(参考自文献[1], 类似的图也可见于文献[2])

    Figure 1.  Sway motion of a moored vessel in response to a unidirectional irregular beam sea: (a) Incident irregular sea record; (b) auto-power spectrum of incident sea-wave; (c) mooring configuration; (d) time record of moored barge sway response; (e) auto-power spectrum of barge sway response (Referenced by Ref. [1], as well as Ref. [2]).

    图 2  充分发展湍流结构图 (a) 湍流信号自功率谱; (b) $ t=16\Delta t, 32\Delta t, 64\Delta t $三个时刻测量的湍流信号, 其中$ \Delta t $表示测试两个相邻信号的时间间隔

    Figure 2.  Fully developed turbulence: (a) Turbulence signal auto-power spectrum; (b) simulated turbulence signals measured at $ t=16\Delta t, 32\Delta t $ and $ 64\Delta t $.

    图 3  方程(2)中给出的非线性系统的示意模型

    Figure 3.  Schematic model of the nonlinear system given in Eq. (2).

    图 4  随机海波激励船舶摇摆系统试验数据 (a) 输入信号谱密度; (b) 近似输入(随机海波波高仿真)信号; (c) 输出信号谱密度; (d) 近似输出(摇摆位形仿真)信号

    Figure 4.  Test data of moored vessel sway system excited by random sea waves: (a) Input signal spectra; (b) approximate input (simulated random sea wave height) signals; (c) output signal spectral density; (d) approximate output (simulated sway configuration) signal.

    图 5  系统输入/输出信号互双谱幅度$ |\langle{{Y}_{i+j}{X}_{i}^{*}{X}_{j}^{*}}\rangle| $ (a) 立体视图; (b) 等高线视图

    Figure 5.  Amplitude of the cross bi-spectrum of the system $ |\langle{{Y}_{i+j}{X}_{i}^{*}{X}_{j}^{*}}\rangle| $: (a) Perspective view; (b) contour plot.

    图 6  计算结果 (a) 线性传递函数$ {L}_{f} $实部; (b) $ {L}_{f} $虚部; (c) $ {L}_{f} $幅度, 其中, 绿线和黑色点线分别表示完备程序(包含非高斯(non-Gaussian)效应)和高斯(Gaussian)程序的计算结果; (d)完备程序计算的二次传递函数幅度$ |{Q}_{f}^{{f}_{1}, {f}_{2}}| $三维分布图; (e)高斯程序计算的二次传递函数幅度$ |{Q}_{f}^{{f}_{1}, {f}_{2}}| $三维分布图

    Figure 6.  Resultant calculations: (a) The real of linear transfer function $ {L}_{f} $; (b) the imaginary of linear transfer function $ {L}_{f}; $(c) the magnitude of linear transfer function $ {L}_{f} $, where the green and black dotted lines are the results calculated using complete program (including non-Gaussian effects) and Gaussian program, respectively; (d) the perspective view (triple distribution) of the magnitude of quadratic transfer function $ |{Q}_{f}^{{f}_{1}, {f}_{2}}| $ calculated by complete programs; (e) the perspective view (triple distribution) of the magnitude of quadratic transfer function $ |{Q}_{f}^{{f}_{1}, {f}_{2}}| $ calculated by Gaussian programs.

    图 7  收敛性分析 (a) $ \left|{L}_{f}\right| $相对误差; (b) $ \left|{Q}_{f}\right| $相对误差

    Figure 7.  Convergence analysis: (a) Relative error of $ \left|{L}_{f}\right| $; (b) relative error of $ \left|{Q}_{f}\right| $.

    图 9  相干系数 (a) 应用完备程序计算结果; (b) 应用高斯输入型程序计算结果

    Figure 9.  Coherence coefficients: (a) Results from the complete program; (b) results from specific program for Gaussian input signals.

    图 8  二次传递函数幅度$ |{Q}_{f}^{{f}_{1}, {f}_{2}}| $等位线图

    Figure 8.  Contour plot of the magnitude of quadratic transfer function $ |{Q}_{f}^{{f}_{1}, {f}_{2}}| $.

    图 10  验算结果 (a)原初始输入信号谱与计算的输出信号谱; (b)复验的摇摆位形; (c)应用高斯输入程序结果复验; (d)在复验处理中移除汉宁窗得到的摇摆位形, 与原输出位形一致

    Figure 10.  Verification results: (a) The original initial input signal spectrum and the calculated output signal spectrum; (b) sway configure of the retest; (c) sway configure computed after applying Gaussian-input program; (d) sway configure computed after removing the Hanning window.

    图 11  充分发展湍流的模拟输入与输出信号谱

    Figure 11.  Simulated input and output spectra of fully developed turbulence.

    图 12  全发展湍流输入/输出信号互双谱幅度$ |\langle{{Y}_{i+j}{X}_{i}^{{\mathrm{*}}}{X}_{j}^{{\mathrm{*}}}}\rangle| $ (a) 立体视图; (b) 等高线视图

    Figure 12.  Amplitude of the cross bi-spectrum of the full-developed turbulence $ |\langle{{Y}_{i+j}{X}_{i}^{{\mathrm{*}}}{X}_{j}^{{\mathrm{*}}}}\rangle| $: (a) Perspective view; (b) contour plot.

    图 13  充分发展湍流系统传递函数计算结果, 其中$ k={k}_{1}^{N}+{k}_{2}^{N},\; {k}_{1}^{N}={f}_{1}/{f}_{{\mathrm{N}}{\mathrm{y}}{\mathrm{q}}} $, $ {k}_{2}^{N}={f}_{2}/{f}_{{\mathrm{N}}{\mathrm{y}}{\mathrm{q}}} $

    Figure 13.  Calculation results of transfer function for simulated full-developed turbulent systems, where $ k={k}_{1}^{N}+{k}_{2}^{N} $, with $ {k}_{1}^{N}={f}_{1}/{f}_{{\mathrm{N}}{\mathrm{y}}{\mathrm{q}}} $ and $ {k}_{2}^{N}={f}_{2}/{f}_{{\mathrm{N}}{\mathrm{y}}{\mathrm{q}}} $.

    图 14  相干性分析

    Figure 14.  Coherence analysis.

    图 15  扩充计算 (a)相位差; (b)平均色散; (c) 线性增长率

    Figure 15.  Extended calculation: (a) Phase difference; (b) average dispersion; (c) linear growth rate.

    图 16  根据输出湍流信号谱反算的信号幅度随测量时间点的变化(部分)

    Figure 16.  Output signals calculated based on the output turbulent signal spectra (a part).

    Baidu
  • [1]

    Choi D, Miksad R W, Powers E J 1985 J. Sound Vib. 99 309Google Scholar

    [2]

    Kim K I, Powers E J, Ritz Ch P, Miksad R W, Fischer F J 1987 IEEE J. Ocean. Eng. OE-12 568Google Scholar

    [3]

    Cherneva Z, Soares C G 2008 Appl. Ocean Res. 30 215Google Scholar

    [4]

    Howard R S, Finneran J J, Ridgway S H 2006 Anesth. Analg. 103 626Google Scholar

    [5]

    Zhang J, Benoit M, Kimmoun O, Chabchoub A, Hsu H C 2019 Fluids 4 99Google Scholar

    [6]

    Zhang S G, Lian J J, Li J X, Liu F, Ma B 2022 Ocean Eng. 264 112473Google Scholar

    [7]

    Smith D E, Powers E J 1973 Phys. Fluids 16 1373Google Scholar

    [8]

    Hasegawa A, Maclennan C G 1979 Phys. Fluids 22 2122Google Scholar

    [9]

    Schmidt O T 2020 Nonlinear Dynam. 102 2479Google Scholar

    [10]

    Cui G, Jacobi I 2021 Phys. Rev. Fluids 6 014604Google Scholar

    [11]

    O’Brien M J, Burkhart B, Shelley M J 2022 Astrophys. J. 930 149Google Scholar

    [12]

    Unnikrishnan S, Gaitonde D V 2020 J. Fluid Mech. 905 A25Google Scholar

    [13]

    Enugonda R, Anandan V K, Ghosh B 2023 J. Electromagnet. Wave. 37 69Google Scholar

    [14]

    Ge Z, Liu P C 2007 Ann. Geophys. 25 1253Google Scholar

    [15]

    Kim Y C, Powers E J 1979 IEEE Trans. Plasma Sci. PS-7 120Google Scholar

    [16]

    Smith D E, Powers E J, Caldwell G S 1974 IEEE Trans. Plasma Sci. PS-2 263Google Scholar

    [17]

    Manz P, Ramisch M, Stroth U, Naulin V, Scott B D 2008 Plasma Phys. Contr. Fusion 50 035008Google Scholar

    [18]

    Manz P, Ramisch M, Stroth U 2009 Phys. Rev. Lett. 103 165004Google Scholar

    [19]

    Shen Y, Shen Y H, Dong J Q, Zhao K J, Shi Z B, Li J Q 2022 Chin. Phys. B 31 065206Google Scholar

    [20]

    Shen Y, Dong J Q, Shi Z B, Nagayama Y, Hirano Y, Yambe K, Yamaguchi S, Zhao K J, Li J Q 2019 Nucl. Fusion 59 044001Google Scholar

    [21]

    Kim Y C, Wong W F, Powers E J, Roth J R 1979 Proc. IEEE 67 428Google Scholar

    [22]

    Hong J Y, Kim Y C, Powers E J 1980 Proc. IEEE 68 1026Google Scholar

    [23]

    Ritz Ch P, Powers E J 1986 Physica D 20 320Google Scholar

    [24]

    Ritz C P, Powers E J, Miksad R W, Solis R S 1988 Phys. Fluids 31 3577Google Scholar

    [25]

    Ritz Ch P, Powers E J, Bengtson R D 1989 Phys. Fluids B 1 153Google Scholar

    [26]

    Kim J S, Durst R D, Fonck R J, Fernandez E, Ware A, Terry P W 1996 Phys. Plasmas 3 3998Google Scholar

    [27]

    Shen Y H, Li J Y, Li T, Li J 2020 Phys. Scr. 95 055202Google Scholar

    [28]

    Shen Y H, Li J, Li T 2020 J. Phys. Soc. Jpn. 89 044501Google Scholar

    [29]

    Hasegawa A, Mimma K 1978 Phys. Fluids 21 87Google Scholar

    [30]

    Proakis J G, Manolakis D G 2006 Digital Signal Processing-Principles, Algorithem, and Applications (4th Ed.) (Beijing: Electronic Industry Press

    [31]

    Dolgikh G I, Gromasheva O S, Dolgikh S G, Plotnikov A A 2021 J. Mar. Sci. Eng. 9 861Google Scholar

    [32]

    Xu M, Tynan G R, Holland C, Yan Z, Muller S H, Yu J H 2009 Phys. Plasmas 16 042312Google Scholar

  • [1] Dong Shuai, Ji Xiang-Yong, Li Chun-Xi. Large eddy simulation of Taylor-Couette turbulent flow under transverse magnetic field. Acta Physica Sinica, 2021, 70(18): 184702. doi: 10.7498/aps.70.20210389
    [2] He Ren, Li Ying-Ye, Chen Jing-Xin, Zhao Xue-Ling, Tang Huan, Zhang Li-Na, Shen Yan-Jiao, Li Feng, Yang Lin, Wei De-Yuan. Three-point and four-point mechanical bending test modeling and application in solar cells. Acta Physica Sinica, 2019, 68(20): 208801. doi: 10.7498/aps.68.20190597
    [3] Wang Yu-Feng, Zhang Jing, Tang Liu, Wang Qing, Gao Tian-Le, Song Yue-Hui, Di Hui-Ge, Li Bo, Hua Deng-Xin. Design and simulation analysis of spectroscopic system for synchronous atmospheric three-phase water detection based on Raman lidar. Acta Physica Sinica, 2018, 67(22): 224205. doi: 10.7498/aps.67.20180644
    [4] Huang Mao-Jing, Bao Yun. Characteristics of flow and thermal boundary layer in turbulent Rayleigh-Bénard convection. Acta Physica Sinica, 2016, 65(20): 204702. doi: 10.7498/aps.65.204702
    [5] Cui Shao-Yan, Lü Xin-Xin, Xin Jie. Collapse and evolution of wave field based on a generalized nonlinear Schrdinger equation. Acta Physica Sinica, 2016, 65(4): 040201. doi: 10.7498/aps.65.040201
    [6] Zhao Guang-Yin, Li Ying-Hong, Liang Hua, Hua Wei-Zhuo, Han Meng-Hu. Phenomenological modeling of nanosecond pulsed surface dielectric barrier discharge plasma actuation for flow control. Acta Physica Sinica, 2015, 64(1): 015101. doi: 10.7498/aps.64.015101
    [7] Quan Peng-Cheng, Yi Shi-He, Wu Yu, Zhu Yang-Zhu, Chen Zhi. Experimental investigation of interactions between laminar or turbulent boundary layer and shock wave. Acta Physica Sinica, 2014, 63(8): 084703. doi: 10.7498/aps.63.084703
    [8] Bao Bo-Cheng, Wang Chun-Li, Wu Hua-Gan, Qiao Xiao-Hua. Dimensionality reduction modeling and characteristic analysis of memristive circuit. Acta Physica Sinica, 2014, 63(2): 020504. doi: 10.7498/aps.63.020504
    [9] Wu Yu, Yi Shi-He, Chen Zhi, Zhang Qing-Hu, Gang Dun-Dian. Experimental investigations on structures of supersonic laminar/turbulent flow over a compression ramp. Acta Physica Sinica, 2013, 62(18): 184702. doi: 10.7498/aps.62.184702
    [10] He Ke-Jing, Zhang Jin-Cheng, Zhou Xiao-Qiang. Simulation of the projectile dynamics in granular media. Acta Physica Sinica, 2013, 62(13): 130204. doi: 10.7498/aps.62.130204
    [11] Yang Xiao-Fang, Mao Wei, Fu Qiang. Modeling of bicycle flow based on dynamic floor field and cellular automata. Acta Physica Sinica, 2013, 62(24): 240511. doi: 10.7498/aps.62.240511
    [12] Chen Liang, Guo Ren-Yong, Ta Na. Simulation and experimental results of evacuation of pedestrian flow in a classroom with two exits. Acta Physica Sinica, 2013, 62(5): 050506. doi: 10.7498/aps.62.050506
    [13] Mei Dong-Jie, Fan Bao-Chun, Chen Yao-Hui, Ye Jing-Fang. Experimental investigation on turbulent channel flow utilizing spanwise oscillating Lorentz force. Acta Physica Sinica, 2010, 59(12): 8335-8342. doi: 10.7498/aps.59.8335
    [14] Mei Dong-Jie, Fan Bao-Chun, Huang Le-Ping, Dong Gang. Drag reduction in turbulent channel flow by spanwise oscillating Lorentz force. Acta Physica Sinica, 2010, 59(10): 6786-6792. doi: 10.7498/aps.59.6786
    [15] Lu He-Lin, Wang Shun-Jin. Zonal flow dynamics in background of ion-temperature-gradient mode turbulence based on minimal freedom model. Acta Physica Sinica, 2009, 58(1): 354-362. doi: 10.7498/aps.58.354
    [16] Ma Jun, Jin Wu-Yin, Yi Ming, Li Yan-Long. Control of spiral wave and turbulence in the time-varied reaction-diffusion system. Acta Physica Sinica, 2008, 57(5): 2832-2841. doi: 10.7498/aps.57.2832
    [17] Li Jun, Dong Hai-Ying. Modelling of chaotic systems using wavelet kernel partial least squares regression method. Acta Physica Sinica, 2008, 57(8): 4756-4765. doi: 10.7498/aps.57.4756
    [18] Zhang Xiao_Ping, Zhu Jian_Lin, Wen Ze_Jun, Yue Zhou, Liu Sha_Sha. Study of a novel matrix converter based on double-loop control strategy. Acta Physica Sinica, 2007, 56(5): 2523-2528. doi: 10.7498/aps.56.2523
    [19] Ye Mei-Ying. Control of chaotic system based on least squares support vector machine modeling. Acta Physica Sinica, 2005, 54(1): 30-34. doi: 10.7498/aps.54.30
    [20] ZHANG XU, SHEN KE. THE TRANSVERSE PATTERN OF LASER OSCILLATION OUTPUT IN A RING CAVITY AND THE TRANSITION TO OPTICAL TURBULENCE. Acta Physica Sinica, 2001, 50(11): 2116-2120. doi: 10.7498/aps.50.2116
Metrics
  • Abstract views:  744
  • PDF Downloads:  23
  • Cited By: 0
Publishing process
  • Received Date:  25 December 2023
  • Accepted Date:  25 August 2024
  • Available Online:  28 August 2024
  • Published Online:  20 September 2024

/

返回文章
返回
Baidu
map