-
纳米钛氧化物忆阻器的导电过程因自身参数的改变及不同机理的共存而呈现复杂特性,但现有研究缺乏针对横截面积参数的改变对忆阻器导电特性影响的讨论. 基于杂质漂移及隧道势垒机理,本文分析了忆阻器导电过程,研究了横截面积参数与导电过程中各关键物理要素间的关联,并基于此,分别研究了钛氧化物横截面积及隧道势垒横截面积的改变对忆阻器导电特性的影响,分析了两者的区别与联系. 验证了两种机理共存情况下,相对于钛氧化物横截面积的改变,隧道势垒横截面积的改变是引发忆阻器导电特性变化的主要因素,且是导致忆阻器非理想导电特性的可能因素. 研究成果有助于进一步解释忆阻器导电过程的复杂性,并为优化忆阻器模型的构建提供依据.The conduction of nano-scale titanium oxide memristor exhibits complex characteristics, owing to the change of self-parameters and the coexistence of different conductive mechanisms. However, there has been no detailed discussion about the influence of the cross section area change on the conductive characteristics of memristor. Based on dopant drift and tunnel barrier mechanisms, the conductive process of memristor is analysed, and the relevance between cross section area and key physical factors of the conductive process is studied, then the influences of the changes of titanium oxide and tunnel barrier cross section area on conductive characteristics of memristors are studied, respectively. The differences and connections between the two cases are analysed. In the case of the coexistence of those two mechanisms, compared with the change of titanium oxide cross section area, the change of tunnel barrier cross section area is proved to be the chief factor which causes changes of memristor conductive characteristics, it is also a possible factor causing the change of non-ideal conductive characteristics of memristor. The research results contribute to further explaining the complexity of memristor conductions and providing basis for optimizing memristor modeling.
-
Keywords:
- memristor /
- cross section area /
- dopant drift /
- tunnel barrier
[1] Tian X B, Xu H 2013 Chin. Phys. B 22 088501
[2] Strukov D B, Snider G S, Stewart D R, Williams R S 2008 Nature 453 80
[3] Chua L O, Kang S M 1976 Proc. IEEE 64 209
[4] Fang X D, Tang Y H, Wu J J 2012 Chin. Phys. B 21 098901
[5] Kim H, Sah M P, Yang C, Roska T, Chua L O 2011 IEEE Trans. Circuits Syst. I Reg. Papers 59 148
[6] Raja T, Mourad S 2009 International Conference on Communications, Circuits and Systems, California, July 23-25, 2009, p939
[7] Bao B C, Hu W, Xu J P, Liu Z, Zou L 2011 Acta Phys. Sin. 60 120502 (in Chinese) [包伯成, 胡文, 许建平, 刘中, 邹凌 2011 60 120502]
[8] Bao B C, Liu Z, Xu J P 2010 Acta Phys. Sin. 59 3785 (in Chinese) [包伯成, 刘中, 许建平 2010 59 3785]
[9] Bao B C, Liu Z, Xu J P 2010 Chin. Phys. B 19 030510
[10] Li Z W, Liu H J, Xu X 2013 Acta Phys. Sin. 62 096401 (in Chinese) [李智炜, 刘海军, 徐欣 2013 62 096401]
[11] Song D H, L M F, Ren X, Li M M, Zu Y X 2012 Acta Phys. Sin. 61 118101 (in Chinese) [宋德华, 吕梦菲, 任翔, 李萌萌, 俎云霄 2012 61 118101]
[12] Jia L N, Huang A P, Zheng X H, Xiao Z S, Wang M 2012 Acta Phys. Sin. 61 217306 (in Chinese) [贾林楠, 黄安平, 郑晓虎, 肖志松, 王玫 2012 61 217306]
[13] Yang J J, Pickett M D, Li X M, Ohlberg D A A, Stewart D R, Williams R S 2008 Nature Nanotech. 3 429
[14] Stewart D R, Ohlberg D A A, Beck P A, Chen Y, Williams R S 2004 Nano Lett. 4 133
[15] Pickett M D, Strukov D B, Borghetti J L, Yang J J, Snider G S, Stewart D R, Williams R S 2009 J. Appl. Phys. 106 074508
[16] Yang J J, Miao F, Pickett M D, Ohlberg D A A, Stewart D R, Lau C N, Williams R S 2009 Nanotechnology 20 215201
[17] Tian X B, Xu H, Li Q J 2013 Chin. Phys. B 22 088502
[18] Prodromakis T, Michelakis K, Toumazou C 2010 Electron. Lett. 46 63
[19] Zhou J, Huang D 2012 Chin. Phys. B 21 048401
[20] Abdalla H, Pickett M D 2011 International Symposium on Circuits and Systems Brazil, May 15-18, 2011 p1832
-
[1] Tian X B, Xu H 2013 Chin. Phys. B 22 088501
[2] Strukov D B, Snider G S, Stewart D R, Williams R S 2008 Nature 453 80
[3] Chua L O, Kang S M 1976 Proc. IEEE 64 209
[4] Fang X D, Tang Y H, Wu J J 2012 Chin. Phys. B 21 098901
[5] Kim H, Sah M P, Yang C, Roska T, Chua L O 2011 IEEE Trans. Circuits Syst. I Reg. Papers 59 148
[6] Raja T, Mourad S 2009 International Conference on Communications, Circuits and Systems, California, July 23-25, 2009, p939
[7] Bao B C, Hu W, Xu J P, Liu Z, Zou L 2011 Acta Phys. Sin. 60 120502 (in Chinese) [包伯成, 胡文, 许建平, 刘中, 邹凌 2011 60 120502]
[8] Bao B C, Liu Z, Xu J P 2010 Acta Phys. Sin. 59 3785 (in Chinese) [包伯成, 刘中, 许建平 2010 59 3785]
[9] Bao B C, Liu Z, Xu J P 2010 Chin. Phys. B 19 030510
[10] Li Z W, Liu H J, Xu X 2013 Acta Phys. Sin. 62 096401 (in Chinese) [李智炜, 刘海军, 徐欣 2013 62 096401]
[11] Song D H, L M F, Ren X, Li M M, Zu Y X 2012 Acta Phys. Sin. 61 118101 (in Chinese) [宋德华, 吕梦菲, 任翔, 李萌萌, 俎云霄 2012 61 118101]
[12] Jia L N, Huang A P, Zheng X H, Xiao Z S, Wang M 2012 Acta Phys. Sin. 61 217306 (in Chinese) [贾林楠, 黄安平, 郑晓虎, 肖志松, 王玫 2012 61 217306]
[13] Yang J J, Pickett M D, Li X M, Ohlberg D A A, Stewart D R, Williams R S 2008 Nature Nanotech. 3 429
[14] Stewart D R, Ohlberg D A A, Beck P A, Chen Y, Williams R S 2004 Nano Lett. 4 133
[15] Pickett M D, Strukov D B, Borghetti J L, Yang J J, Snider G S, Stewart D R, Williams R S 2009 J. Appl. Phys. 106 074508
[16] Yang J J, Miao F, Pickett M D, Ohlberg D A A, Stewart D R, Lau C N, Williams R S 2009 Nanotechnology 20 215201
[17] Tian X B, Xu H, Li Q J 2013 Chin. Phys. B 22 088502
[18] Prodromakis T, Michelakis K, Toumazou C 2010 Electron. Lett. 46 63
[19] Zhou J, Huang D 2012 Chin. Phys. B 21 048401
[20] Abdalla H, Pickett M D 2011 International Symposium on Circuits and Systems Brazil, May 15-18, 2011 p1832
计量
- 文章访问数: 6540
- PDF下载量: 512
- 被引次数: 0