Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Improvement of dynamic light scattering method for measurement of particle diameter and liquid viscosity

Zhang Ying Zheng Yu He Mao-Gang

Citation:

Improvement of dynamic light scattering method for measurement of particle diameter and liquid viscosity

Zhang Ying, Zheng Yu, He Mao-Gang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Dynamic light scattering (DLS) technology has been employed to measure the hydrodynamic diameter of particle and liquid viscosity by detecting the translational diffusion coefficient of Brownian particle in the suspending liquid.The interaction between the particles in the suspension may lead to unpredictable deviations when the Stokes-Einstein equation is applied directly in the measurement.In order to solve this problem,this paper deduced the Stokes-Einstein's equation and introduced the One-Parameter Models to modify the existing DLS measurement principle.Based on the One-Parameter Models,the linear relation of collective translational diffusion coefficient with the single-particle translational diffusion coefficient and particles concentration was established and verified by the measurement under low particle concentration,which was introduced in the DLS principle.The improved method was able to obtain the single-particle translational diffusion coefficient,then the problem caused by the change of particle size in the suspension was solved.Compared with previous methods,the improved method can be used to measure the nominal diameter of nanoscale spherical particles and absolutely detect liquid viscosity.The fundamental principle of detection by light scattering was explained and a DLS experimental system was established for the measurement of viscosity and particle size.The two dispersed systems of polystyrene particles+water and silica particles+alcohol were considered as the samples for reference and measured to verify the reasonability of the improved method presented in this work.In addition,the influence of temperature and particles concentration on the collective translational diffusion coefficient was detected for this two dispersed systems.The interaction between the particles in the suspension was analyzed based on the experimental results. In a two-component system composed of rigid particles and liquid,three types of force act on a particle,which included the “Brownian” force,the direct interactions between the particles and the hydrodynamic interactions.The combined effects of the three forces can be qualitatively described as attractive or repulsive.The collective translational diffusion coefficient of the particles in the suspension increases with the increase of the particle volume concentration,indicating that the force between the particles in the suspension is repulsive,and vice versa.In addition,it was confirmed that in the ideal thin suspension,the Brownian motion of the particles increases with the temperature increases.The experimental results indicated the attractive forces among the polystyrene particles in water and the repulsive force among the silica particles in alcohol.The relationship between the second osmotic virial coefficient and the law of particles' collective translational diffusion coefficient with particles concentration is discussed.
      Corresponding author: He Mao-Gang, mghe@mail.xjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51576161) and the Fundamental Research Funds for the Central Universities of China (Grant No. XJTU-GJQY-001).
    [1]

    Glatter D T O, Sieberer D I J, Schnablegger H 1991 Part. Part. Syst. Charact. 8 274

    [2]

    Jaeger N D, Demeyere H, Foord R, Sneyers R, Vanderdeelen J, Meeren P V D, Laethem M V 1991 Part. Part. Syst. Charact. 8 179

    [3]

    Foord R, Jaeger N D 1991 Part. Part. Syst. Charact. 8 187

    [4]

    Foord R, Jaeger N D, Sneyers R, Geladé E 1992 Part. Part. Syst. Charact. 9 125

    [5]

    Foord R, Deriemaeker L, Jaeger N D, Sneyers R, Vanderdeelen J, Meeren Pvd, Demeyere H, Stone-Masu J, Haestier A, Clauwaert J, Wispelaere W D, Gillioen P, Steyfkens S, Geladé E 1992 Part. Part. Syst. Charact. 10 118

    [6]

    Krahn D I W, Luckas D I M, Lucas D I K 1988 Part. Part. Syst. Charact. 5 72

    [7]

    Phiilles G D H 1981 J. Phys. Chem. 85 2838

    [8]

    Saad H, Bae Y C, Gulari E 1988 Langmuir 1 63

    [9]

    Will S, Leipertz A 1993 Appl. Opt. 21 3913

    [10]

    Will S, Leipertz A 1995 Int. J. Thermophys. 2 433

    [11]

    Will S, Leipertz A 1997 Int. J. Thermophys. 6 1339

    [12]

    Will S, Leipertz A 1999 Int. J. Thermophys. 3 791

    [13]

    He F, Becker G W, Litowski J R, Narhi L O, Brems D N, Razinkov V I 2010 Anal. Biochem. 399 141

    [14]

    Amin S, Rega C A, Jankevics H 2012 Rheol. Acta 51 329

    [15]

    Wagner M, Reiche K, Blume A, Garidel P 2013 Pharm. Dev. Technol. 4 963

    [16]

    Kroner G, Fuchs H, Tatschl R, Glatter O 2003 Part. Part. Syst. Charact. 20 111

    [17]

    Yamaguchi T, Azuma Y, Okuyama K 2006 Part. Part. Syst. Charact. 23 188

    [18]

    Einstein A 1908 Z. Electrochem. 14 235

    [19]

    Finsy R, Devriese A, Lekkerkerker H 1980 J. Chem. Soc. Pakistan 76 767

    [20]

    Robert P 1985 Dynamic Light Scattering (New York and London: Plenum Press) pp85-179

    [21]

    Finsy R 1990 Part. Part. Syst. Charact. 7 74

    [22]

    Smidt J H D, Crommelin D J A 1991 Int. J. Pharmaceut. 77 261

    [23]

    Yang H, Zheng G, Li M C, Chen J B 2008 Acta Photo. Sin. 37 1539 (in Chinese) [杨晖, 郑刚, 李孟超, 陈家璧 2008 光子学报 37 1539]

    [24]

    Huber M L, Perkins R A, Laesecke A, Friend D G, Sengers J V, Assael M J, Metaxa I M, Vogel E, Mares R, Miyagawa K 2009 J. Phys. Chem. Ref. Data 38 101

    [25]

    Zhang S J, Li X, Chen H P, Wang J F, Zhang J M, Zhang M L 2004 J. Chem. Eng. Data 49 760

    [26]

    González B, Calvar N, Gómez E, Domínguez Á 2007 J. Chem. Thermodyn. 39 1578

    [27]

    Gong Y H, Shen C, Lu Y Z, Meng H, Li C X 2011 J. Chem. Eng. Data 57 33

    [28]

    Chen L X, Chen J Y, Song Z H, Cui G K, Xu Y J, Wang X H, Liu J 2015 J. Chem. Thermodyn. 91 292

    [29]

    Kumaga A, Yokoyama C 1998 Int. J. Thermophys. 19 3

    [30]

    Chen S D, Lei Q F, Fang W J 2005 Fluid Phase Equilibria 234 22

    [31]

    Lu X X, Wu D, Ye D F, Wang Y P, Guo Y S, Fang W J 2015 J. Chem. Eng. Data 60 2618

  • [1]

    Glatter D T O, Sieberer D I J, Schnablegger H 1991 Part. Part. Syst. Charact. 8 274

    [2]

    Jaeger N D, Demeyere H, Foord R, Sneyers R, Vanderdeelen J, Meeren P V D, Laethem M V 1991 Part. Part. Syst. Charact. 8 179

    [3]

    Foord R, Jaeger N D 1991 Part. Part. Syst. Charact. 8 187

    [4]

    Foord R, Jaeger N D, Sneyers R, Geladé E 1992 Part. Part. Syst. Charact. 9 125

    [5]

    Foord R, Deriemaeker L, Jaeger N D, Sneyers R, Vanderdeelen J, Meeren Pvd, Demeyere H, Stone-Masu J, Haestier A, Clauwaert J, Wispelaere W D, Gillioen P, Steyfkens S, Geladé E 1992 Part. Part. Syst. Charact. 10 118

    [6]

    Krahn D I W, Luckas D I M, Lucas D I K 1988 Part. Part. Syst. Charact. 5 72

    [7]

    Phiilles G D H 1981 J. Phys. Chem. 85 2838

    [8]

    Saad H, Bae Y C, Gulari E 1988 Langmuir 1 63

    [9]

    Will S, Leipertz A 1993 Appl. Opt. 21 3913

    [10]

    Will S, Leipertz A 1995 Int. J. Thermophys. 2 433

    [11]

    Will S, Leipertz A 1997 Int. J. Thermophys. 6 1339

    [12]

    Will S, Leipertz A 1999 Int. J. Thermophys. 3 791

    [13]

    He F, Becker G W, Litowski J R, Narhi L O, Brems D N, Razinkov V I 2010 Anal. Biochem. 399 141

    [14]

    Amin S, Rega C A, Jankevics H 2012 Rheol. Acta 51 329

    [15]

    Wagner M, Reiche K, Blume A, Garidel P 2013 Pharm. Dev. Technol. 4 963

    [16]

    Kroner G, Fuchs H, Tatschl R, Glatter O 2003 Part. Part. Syst. Charact. 20 111

    [17]

    Yamaguchi T, Azuma Y, Okuyama K 2006 Part. Part. Syst. Charact. 23 188

    [18]

    Einstein A 1908 Z. Electrochem. 14 235

    [19]

    Finsy R, Devriese A, Lekkerkerker H 1980 J. Chem. Soc. Pakistan 76 767

    [20]

    Robert P 1985 Dynamic Light Scattering (New York and London: Plenum Press) pp85-179

    [21]

    Finsy R 1990 Part. Part. Syst. Charact. 7 74

    [22]

    Smidt J H D, Crommelin D J A 1991 Int. J. Pharmaceut. 77 261

    [23]

    Yang H, Zheng G, Li M C, Chen J B 2008 Acta Photo. Sin. 37 1539 (in Chinese) [杨晖, 郑刚, 李孟超, 陈家璧 2008 光子学报 37 1539]

    [24]

    Huber M L, Perkins R A, Laesecke A, Friend D G, Sengers J V, Assael M J, Metaxa I M, Vogel E, Mares R, Miyagawa K 2009 J. Phys. Chem. Ref. Data 38 101

    [25]

    Zhang S J, Li X, Chen H P, Wang J F, Zhang J M, Zhang M L 2004 J. Chem. Eng. Data 49 760

    [26]

    González B, Calvar N, Gómez E, Domínguez Á 2007 J. Chem. Thermodyn. 39 1578

    [27]

    Gong Y H, Shen C, Lu Y Z, Meng H, Li C X 2011 J. Chem. Eng. Data 57 33

    [28]

    Chen L X, Chen J Y, Song Z H, Cui G K, Xu Y J, Wang X H, Liu J 2015 J. Chem. Thermodyn. 91 292

    [29]

    Kumaga A, Yokoyama C 1998 Int. J. Thermophys. 19 3

    [30]

    Chen S D, Lei Q F, Fang W J 2005 Fluid Phase Equilibria 234 22

    [31]

    Lu X X, Wu D, Ye D F, Wang Y P, Guo Y S, Fang W J 2015 J. Chem. Eng. Data 60 2618

  • [1] Yang Zhi-Gang, Liu Ying-Chao, Zhang Shi-Qing, Luo Rui-Jian, Zhao Xu-Qian, Lian Jia-Rong, Qu Jun-Le. Fluorescence lifetime imaging of dynamics of mitochondrial and nucleolar microenvironment during stimuli response in living cells. Acta Physica Sinica, 2024, 73(7): 078702. doi: 10.7498/aps.73.20231990
    [2] Chen Hong-Mei, Li Shi-Wei, Li Kai-Jing, Zhang Zhi-Yong, Chen Hao, Wang Ting-Ting. Molecules structure and viscosity relationship of nematic liquid crystal and BPNN-QSAR model. Acta Physica Sinica, 2024, 73(6): 066101. doi: 10.7498/aps.73.20231763
    [3] Zheng Suo-Sheng, Huang Yao, Zou Kun, Peng Yi-Tian. Numerical simulation of flow pattern for non-Newtonian flow in agitated thin film evaporator. Acta Physica Sinica, 2022, 71(5): 054701. doi: 10.7498/aps.71.20211921
    [4] Shang Ji-Xiang, Zhao Yun-Bo, Hu Li-Na. Abnormal viscosity changes in high-temperature metallic melts. Acta Physica Sinica, 2018, 67(10): 106402. doi: 10.7498/aps.67.20172721
    [5] Xu Min, Shen Jin, Huang Yu, Xu Ya-Nan, Zhu Xin-Jun, Wang Ya-Jing, Liu Wei, Gao Ming-Liang. Weighting inversion of dynamic light scattering based on particle-size information distribution character. Acta Physica Sinica, 2018, 67(13): 134201. doi: 10.7498/aps.67.20172377
    [6] Xia Hui, Yang Wei-Guo. Permeability of nano SiO2 aggregates in concentrated suspension. Acta Physica Sinica, 2016, 65(14): 144203. doi: 10.7498/aps.65.144203
    [7] Xu Jun, Chen Gang. Influence of annealing temperature on the distribution of particle sizes of quantum dots doped glass. Acta Physica Sinica, 2015, 64(12): 127302. doi: 10.7498/aps.64.127302
    [8] Zhao Zi-Jie, Zhao Yun-Sheng. Bidirectional reflectance of sandy land surface with different particle sizes. Acta Physica Sinica, 2014, 63(18): 187801. doi: 10.7498/aps.63.187801
    [9] Liang Gang-Tao, Guo Ya-Li, Shen Sheng-Qiang. Observation and analysis of drop impact on wetted spherical surfaces with low velocity. Acta Physica Sinica, 2013, 62(18): 184703. doi: 10.7498/aps.62.184703
    [10] Zhao Ning, Huang Ming-Liang, Ma Hai-Tao, Pan Xue-Min, Liu Xiao-Ying. Viscosities and wetting behaviors of Sn-Cu solders. Acta Physica Sinica, 2013, 62(8): 086601. doi: 10.7498/aps.62.086601
    [11] An Bao-Lin, Lin Hong, Liu Qiang, Duan Yuan-Yuan. Viscosity measurements using a cylindrical resonator. Acta Physica Sinica, 2013, 62(17): 175101. doi: 10.7498/aps.62.175101
    [12] Wu Ying-Chun, Wu Xue-Cheng, Sawitree Saengkaewi, Jiang Hao-Yu, Hong Qiao-Qiao, Gérard Gréhan, Cen Ke-Fa. Concentration and size measurements of sprays with global rainbow technique. Acta Physica Sinica, 2013, 62(9): 090703. doi: 10.7498/aps.62.090703
    [13] Lin Yu, Yang Guang-Can, Wang Yan-Wei. A dynamic light scattering study of counter-ions condensation on DNA. Acta Physica Sinica, 2013, 62(11): 118702. doi: 10.7498/aps.62.118702
    [14] Shao Xue-Peng, Xie Wen-Jun. Sectorial oscillation of acoustically levitated viscous drops. Acta Physica Sinica, 2012, 61(13): 134302. doi: 10.7498/aps.61.134302
    [15] Hu Ke-Yan, Li Hong-Jun, Xu Jun, Yang Qiu-Hong, Su Liang-Bi, Tang Qiang. Thermoluminescence and optically stimulated luminescence characteristics of -Al2O3:C crystal powder of different particle size. Acta Physica Sinica, 2012, 61(15): 157802. doi: 10.7498/aps.61.157802
    [16] Wei Hong-Qing, Li Xiang-An, Long Zhi-Lin, Peng Jian, Zhang Ping, Zhang Zhi-Chun. Correlations between viscosity and glass-forming ability in bulk amorphous alloys. Acta Physica Sinica, 2009, 58(4): 2556-2564. doi: 10.7498/aps.58.2556
    [17] Wang Zhen-Yu, Yang Yuan-Sheng, Tong Wen-Hui, Li Hui-Qiang, Hu Zhuang-Qi. A new model for calculating critical cooling rates of alloy systems based on viscosity calculation. Acta Physica Sinica, 2007, 56(3): 1543-1548. doi: 10.7498/aps.56.1543
    [18] Rong Li-Xia, Wei Liu-He, Dong Bao-Zhong, Wang Jun, Li Fu-Mian, Li Zi-Chen. . Acta Physica Sinica, 2002, 51(8): 1773-1777. doi: 10.7498/aps.51.1773
    [19] ZHANG YI-XIN, XU QIANG. THE COUPLING OF OPTICAL AND SIZE POLYDISPERSITIES BY DYNAMIC LIGHT SCATTERING. Acta Physica Sinica, 1999, 48(4): 735-743. doi: 10.7498/aps.48.735
    [20] ZHANG XI-QING, ZHAO JIA-LONG, QIN WEI-PING, DOU KAI, HUANG SHI-HUA. MEASUREMENT OF THE AMBIPOLAR DIFFUSION COEFFICIENT USING TIME-DELAYED FOUR-WAVE MIXING WITH INCOHERENT LIGHT. Acta Physica Sinica, 1993, 42(3): 417-421. doi: 10.7498/aps.42.417
Metrics
  • Abstract views:  6745
  • PDF Downloads:  135
  • Cited By: 0
Publishing process
  • Received Date:  02 February 2018
  • Accepted Date:  22 May 2018
  • Published Online:  20 August 2019

/

返回文章
返回
Baidu
map