搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

液滴低速撞击润湿球面现象观测分析

梁刚涛 郭亚丽 沈胜强

引用本文:
Citation:

液滴低速撞击润湿球面现象观测分析

梁刚涛, 郭亚丽, 沈胜强

Observation and analysis of drop impact on wetted spherical surfaces with low velocity

Liang Gang-Tao, Guo Ya-Li, Shen Sheng-Qiang
PDF
导出引用
  • 采用高速摄像仪以10000 帧/s的拍摄速度对液滴低速撞击润湿球体表面过程进行了实验观测, 分析了液滴撞击后的反弹、局部反弹和铺展等现象, 考察了黏度对撞击过程的影响; 在此基础上, 定量讨论了液滴铺展特征参数随撞击速度、球体直径和黏度的变化规律. 观测发现: 黏度较大且撞击速度较低时, 撞击后可能出现反弹和局部反弹, 黏度较小时则不发生; 铺展面积随撞击速度的增大而增大; 黏度增大时, 铺展因子减小; 在球体直径为4–20 mm范围内, 随着球体直径的增加, 铺展因子呈上升趋势.
    The phenomenon of liquid drop impact on wetted spherical surfaces with low impact velocity is observed using a high speed digital camera at 10000 frames per second. Drop rebound, partial rebound and spreading are observed and analyzed, considering the effect of viscosity. Influences of the sphere diameter, impact velocity and viscosity on the spreading characteristic parameter are discussed quantitatively. The experimental observations show that the drop rebound and partial rebound phenomena may occur at large viscosity and low impact velocity, which cannot be observed at small viscosity. The spreading area can be increased by increasing impact velocity. The results also reveal that the spreading factor increases with viscosity decreasing. At the sphere diameters ranging from 4 mm to 20 mm, it is found that with the increase of the sphere diameter, the spreading factor will be increased.
    • 基金项目: 国家自然科学基金(批准号:51176017)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51176017)
    [1]

    Sun Z H, Han R J 2008 Chin. Phys. B 17 3185

    [2]

    Cossali G E, Coghe A, Marengo M 1997 Exp. Fluids 22 463

    [3]

    Vander Wal R, Berger G, Mozes S 2006 Exp. Fluids 40 33

    [4]

    Vander Wal R, Berger G, Mozes S 2006 Exp. Fluids 40 53

    [5]

    Vander Wal R, Berger G, Mozes S 2006 Exp. Fluids 40 23

    [6]

    Okawa T, Shiraishi T, Mori T 2006 Exp. Fluids 41 965

    [7]

    Rioboo R, Bauthier C, Conti J, Voué M, De Coninck J 2003 Exp. Fluids 35 648

    [8]

    Yarin A L, Weiss D A 1995 J. Fluid Mech. 283 141

    [9]

    Liang G T, Shen S Q, Guo Y L, Chen J X, Yu H, Li Y Q 2013 Acta Phys. Sin. 62 084707 (in Chinese) [梁刚涛, 沈胜强, 郭亚丽, 陈觉先, 于欢, 李熠桥 2013 62 084707]

    [10]

    Chowdhury D, Sarkar S P, Kalita D, Sarma T K, Paul A, Chattopadhyay A 2004 Langmuir 20 1251

    [11]

    Thoroddsen S T 2002 J. Fluid Mech. 451 373

    [12]

    Liang G T, Guo Y L, Shen S Q 2013 Acta Phys. Sin. 62 024705 (in Chinese) [梁刚涛, 郭亚丽, 沈胜强 2013 62 024705]

    [13]

    Liang G T, Shen S Q, Yang Y 2012 J. Therm. Sci. Technol. 11 8 (in Chinese) [梁刚涛, 沈胜强, 杨勇 2012 热科学与技术 11 8]

    [14]

    Ma L Q, Chang J Z, Liu H T, Liu M B 2012 Acta Phys. Sin. 61 054701 (in Chinese) [马理强, 常建忠, 刘汉涛, 刘谋斌 2012 61 054701]

    [15]

    Ma L Q, Liu M B, Chang J Z, Su T X, Liu H T 2012 Acta Phys. Sin. 61 244701 (in Chinese) [马理强, 刘谋斌, 常建忠, 苏铁熊, 刘汉涛 2012 61 244701]

    [16]

    Tang B, Li J F, Wang T S 2008 Acta Phys. Sin. 57 6722 (in Chinese) [汤波, 李俊峰, 王天舒 2008 57 6722]

    [17]

    Bakshi S, Roisman I, Tropea C 2007 Phys. Fluids 19 032102

    [18]

    Hardalupas Y, Taylor A M K P, Wilkins J H 1999 Int. J. Heat Fluid Fl. 20 477

    [19]

    Hung L S, Yao S C 1999 Int. J. Multiphas. Flow 25 1545

    [20]

    Pasandideh-Fard M, Bussmann M, Chandra S, Mostaghimi J 2001 Atomization Spray. 11 397

    [21]

    Shen S, Bi F, Guo Y 2012 Int. J. Heat Mass Trans. 55 6938

    [22]

    Rioboo R, Marengo M, Tropea C 2002 Exp. Fluids 33 112

    [23]

    Stow C D, Hadfield M G 1981 Proc. R. Soc. A: Math. Phys. Sci. 373 419

    [24]

    Mundo C, Sommerfeld M, Tropea C 1995 Int. J. Multiphas. Flow 21 151

    [25]

    Bi F F, Guo Y L, Shen S Q, Chen J X, Li Y Q 2012 Acta Phys. Sin. 61 184702 (in Chinese) [毕菲菲, 郭亚丽, 沈胜强, 陈觉先, 李熠桥 2012 61 184702]

  • [1]

    Sun Z H, Han R J 2008 Chin. Phys. B 17 3185

    [2]

    Cossali G E, Coghe A, Marengo M 1997 Exp. Fluids 22 463

    [3]

    Vander Wal R, Berger G, Mozes S 2006 Exp. Fluids 40 33

    [4]

    Vander Wal R, Berger G, Mozes S 2006 Exp. Fluids 40 53

    [5]

    Vander Wal R, Berger G, Mozes S 2006 Exp. Fluids 40 23

    [6]

    Okawa T, Shiraishi T, Mori T 2006 Exp. Fluids 41 965

    [7]

    Rioboo R, Bauthier C, Conti J, Voué M, De Coninck J 2003 Exp. Fluids 35 648

    [8]

    Yarin A L, Weiss D A 1995 J. Fluid Mech. 283 141

    [9]

    Liang G T, Shen S Q, Guo Y L, Chen J X, Yu H, Li Y Q 2013 Acta Phys. Sin. 62 084707 (in Chinese) [梁刚涛, 沈胜强, 郭亚丽, 陈觉先, 于欢, 李熠桥 2013 62 084707]

    [10]

    Chowdhury D, Sarkar S P, Kalita D, Sarma T K, Paul A, Chattopadhyay A 2004 Langmuir 20 1251

    [11]

    Thoroddsen S T 2002 J. Fluid Mech. 451 373

    [12]

    Liang G T, Guo Y L, Shen S Q 2013 Acta Phys. Sin. 62 024705 (in Chinese) [梁刚涛, 郭亚丽, 沈胜强 2013 62 024705]

    [13]

    Liang G T, Shen S Q, Yang Y 2012 J. Therm. Sci. Technol. 11 8 (in Chinese) [梁刚涛, 沈胜强, 杨勇 2012 热科学与技术 11 8]

    [14]

    Ma L Q, Chang J Z, Liu H T, Liu M B 2012 Acta Phys. Sin. 61 054701 (in Chinese) [马理强, 常建忠, 刘汉涛, 刘谋斌 2012 61 054701]

    [15]

    Ma L Q, Liu M B, Chang J Z, Su T X, Liu H T 2012 Acta Phys. Sin. 61 244701 (in Chinese) [马理强, 刘谋斌, 常建忠, 苏铁熊, 刘汉涛 2012 61 244701]

    [16]

    Tang B, Li J F, Wang T S 2008 Acta Phys. Sin. 57 6722 (in Chinese) [汤波, 李俊峰, 王天舒 2008 57 6722]

    [17]

    Bakshi S, Roisman I, Tropea C 2007 Phys. Fluids 19 032102

    [18]

    Hardalupas Y, Taylor A M K P, Wilkins J H 1999 Int. J. Heat Fluid Fl. 20 477

    [19]

    Hung L S, Yao S C 1999 Int. J. Multiphas. Flow 25 1545

    [20]

    Pasandideh-Fard M, Bussmann M, Chandra S, Mostaghimi J 2001 Atomization Spray. 11 397

    [21]

    Shen S, Bi F, Guo Y 2012 Int. J. Heat Mass Trans. 55 6938

    [22]

    Rioboo R, Marengo M, Tropea C 2002 Exp. Fluids 33 112

    [23]

    Stow C D, Hadfield M G 1981 Proc. R. Soc. A: Math. Phys. Sci. 373 419

    [24]

    Mundo C, Sommerfeld M, Tropea C 1995 Int. J. Multiphas. Flow 21 151

    [25]

    Bi F F, Guo Y L, Shen S Q, Chen J X, Li Y Q 2012 Acta Phys. Sin. 61 184702 (in Chinese) [毕菲菲, 郭亚丽, 沈胜强, 陈觉先, 李熠桥 2012 61 184702]

  • [1] 沈学峰, 曹宇, 王军锋, 刘海龙. 剪切变稀液滴撞击不同浸润性壁面的数值模拟研究.  , 2020, 69(6): 064702. doi: 10.7498/aps.69.20191682
    [2] 荣松, 沈世全, 王天友, 车志钊. 液滴撞击加热壁面雾化弹起模式及驻留时间.  , 2019, 68(15): 154701. doi: 10.7498/aps.68.20190097
    [3] 李春曦, 施智贤, 庄立宇, 叶学民. 活性剂对表面声波作用下薄液膜铺展的影响.  , 2019, 68(21): 214703. doi: 10.7498/aps.68.20190791
    [4] 商继祥, 赵云波, 胡丽娜. 高温金属熔体黏度突变探索.  , 2018, 67(10): 106402. doi: 10.7498/aps.67.20172721
    [5] 白玲, 李大鸣, 李彦卿, 王志超, 李杨杨. 基于范德瓦尔斯表面张力模式液滴撞击疏水壁面过程的研究.  , 2015, 64(11): 114701. doi: 10.7498/aps.64.114701
    [6] 戴剑锋, 樊学萍, 蒙波, 刘骥飞. 单液滴撞击倾斜液膜飞溅过程的耦合Level Set-VOF模拟.  , 2015, 64(9): 094704. doi: 10.7498/aps.64.094704
    [7] 沈胜强, 张洁珊, 梁刚涛. 液滴撞击加热壁面传热实验研究.  , 2015, 64(13): 134704. doi: 10.7498/aps.64.134704
    [8] 林林, 袁儒强, 张欣欣, 王晓东. 液滴在梯度微结构表面上的铺展动力学分析.  , 2015, 64(15): 154705. doi: 10.7498/aps.64.154705
    [9] 李春曦, 陈朋强, 叶学民. 含活性剂液滴在倾斜粗糙壁面上的铺展稳定性.  , 2015, 64(1): 014702. doi: 10.7498/aps.64.014702
    [10] 李春曦, 陈朋强, 叶学民. 连续凹槽基底对含非溶性活性剂薄液膜流动特性的影响.  , 2014, 63(22): 224703. doi: 10.7498/aps.63.224703
    [11] 郭亚丽, 魏兰, 沈胜强, 陈桂影. 双液滴撞击平面液膜的流动与传热特性.  , 2014, 63(9): 094702. doi: 10.7498/aps.63.094702
    [12] 安保林, 林鸿, 刘强, 段远源. 基于圆柱定程干涉法测量气体黏度的探索.  , 2013, 62(17): 175101. doi: 10.7498/aps.62.175101
    [13] 赵宁, 黄明亮, 马海涛, 潘学民, 刘晓英. 液态Sn-Cu钎料的黏滞性与润湿行为研究.  , 2013, 62(8): 086601. doi: 10.7498/aps.62.086601
    [14] 梁刚涛, 沈胜强, 郭亚丽, 陈觉先, 于欢, 李熠桥. 实验观测液滴撞击倾斜表面液膜的特殊现象.  , 2013, 62(8): 084707. doi: 10.7498/aps.62.084707
    [15] 梁刚涛, 郭亚丽, 沈胜强. 液滴撞击液膜的射流与水花形成机理分析.  , 2013, 62(2): 024705. doi: 10.7498/aps.62.024705
    [16] 刘邱祖, 寇子明, 韩振南, 高贵军. 基于格子Boltzmann方法的液滴沿固壁铺展动态过程模拟.  , 2013, 62(23): 234701. doi: 10.7498/aps.62.234701
    [17] 李春曦, 裴建军, 叶学民. 波纹基底上含不溶性活性剂液滴的铺展稳定性.  , 2013, 62(17): 174702. doi: 10.7498/aps.62.174702
    [18] 邵学鹏, 解文军. 声悬浮条件下黏性液滴的扇谐振荡规律研究.  , 2012, 61(13): 134302. doi: 10.7498/aps.61.134302
    [19] 毕菲菲, 郭亚丽, 沈胜强, 陈觉先, 李熠桥. 液滴撞击固体表面铺展特性的实验研究.  , 2012, 61(18): 184702. doi: 10.7498/aps.61.184702
    [20] 危洪清, 李乡安, 龙志林, 彭建, 张平, 张志纯. 块体非晶合金的黏度与玻璃形成能力的关系.  , 2009, 58(4): 2556-2564. doi: 10.7498/aps.58.2556
计量
  • 文章访问数:  7297
  • PDF下载量:  1124
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-04-10
  • 修回日期:  2013-06-14
  • 刊出日期:  2013-09-05

/

返回文章
返回
Baidu
map