-
The low coherence optical fiber dynamic light scattering method is used to measure the effective diffusion coefficients of nano SiO2 aggregates suspensions with different volume fractions. The single scattering component can be detected preferentially from the multiply scattered light which is backscattered from the dense suspensions by the low coherence optical fiber dynamic light scattering. Consequently, the measured single-scattering spectrum enables the analysis of the effective diffusion coefficient by the single scattering theory. The numerical calculation results of short-time diffusion dynamics for permeable particles in dense suspension show that the effective diffusion coefficient is a function of particle size and hydrodynamics shielding depth ratio , and the volum fraction . According to the corrected Brinkman theory, the permeability of the nano SiO2 aggregates is obtained. For the volume fraction = 0.01, 0.02, 0.03, 0.04, 0.05 nano SiO2 aggregate suspensions with the average particle diameter 500 nm, the measured effective diffusion coefficients are 4.140.10, 4.060.06, 3.970.06, 3.900.08, 3.800.10 (10-13 m2/s) respectively. While according to the hard sphere model of impermeable particles, which corresponds to = , the calculated effective diffusion coefficients are 3.70, 3.61, 3.52, 3.42, 3.36 (10-13 m2/s) respectively. It can be seen that the measured values are much bigger than the theoretical values of impermeable particles: their difference comes from the influence of permeability of porous aggregates on particle diffusion. It is found that the measured values are consistent with that of = 12, in which the corrsponding permeability of the nano SiO2 aggregates is k = 4.34 10-16 m2. The pixel statistic method by Photoshop CS6 is used to deal with the SEM images of SiO2 aggregates, the calculated permeability of the nano SiO2 aggregates is k = 4.55 10-16 m2, compared with the experimental result, the standard error is 4.87%. The results show that under the condition of constant temperature, the particles of permeable aggregates spread faster than the hard sphere particles. For constant temperature, particle size and permeability, the effective coefficient decreases with the increase of the volume fraction. The measured permeability of SiO2 aggregates in concentrated suspension is consistent with that obtained from the pixel statistics by Photoshop CS6. As a result, the low coherent optical fiber dynamic light scattering can effectively measure the permeability of porous nano particles in concentrated suspension, showing high potential application in the field of chemical engineering and nano materials preparation.
-
Keywords:
- suspensions /
- permeability /
- aggregates /
- dynamic light scattering
[1] Gustavo C A, Bogdan C, Maria L E, Gerhard N, Eligiusz W 2010 J. Chem. Phys. 133 084906
[2] Hijazi A, Atwi A, Khater A 2014 Inter. J. Comp. Theor. Eng. 6 401
[3] Huang C L, Feng Y H, Zhang X X, Li W, Yang M, Li J, Wang G 2012 Acta Phys. Sin. 61 154402 (in Chinese) [黄丛亮, 冯妍卉, 张欣欣, 李威, 杨穆, 李静, 王戈 2012 61 154402]
[4] de la Mora M B, Bornacelli J, Nava R, Zanella R, Reyes-Esqueda J A 2014 J. Lumin. 146 247
[5] Purnomo E H, van den Ende D, Vanapalli S A, Mugele F 2008 Phys. Rev. Lett. 101 238301
[6] Dhont J K G 1996 An Introduction to Dynamics of Colloids (Amsterdam: Elsevier) pp327-329
[7] Brene B J, Pecora R 1976 Dynamic Light Scattering (New York: John Wiley and sons) pp1-6
[8] Xia H, Ishii K, Iwaii T, Li H J Yang B C 2008 Appl. Opt. 47 1257
[9] Xia H, Miao C X, Cheng J W, Tao S H, Pang R Y, Wu X Y 2012 Appl. Opt. 51 3263
[10] Xia H, Li H J, Yang B C, Ishii K, Iwai T 2008 Opt. Commun. 281 1331
[11] Ishii K, Yoshida R, Iwai T 2005 Opt. Lett. 30 555
[12] Zhong C, Chen Z Q, Yang W G, Xia H 2013 Acta Phys. Sin. 62 214207 (in Chinese) [钟诚, 陈智全, 杨伟国, 夏辉 2013 62 214207]
[13] Yang W G, Zhong C, Xia H 2014 Acta Phys. Sin. 63 214705 (in Chinese) [杨伟国, 钟诚, 夏辉 2014 63 214705]
[14] Brinkman H C 1949 Appl. Sci. Res. 1 27
[15] Vanni M 2000 Chem. Eng. Sci. 55 685
-
[1] Gustavo C A, Bogdan C, Maria L E, Gerhard N, Eligiusz W 2010 J. Chem. Phys. 133 084906
[2] Hijazi A, Atwi A, Khater A 2014 Inter. J. Comp. Theor. Eng. 6 401
[3] Huang C L, Feng Y H, Zhang X X, Li W, Yang M, Li J, Wang G 2012 Acta Phys. Sin. 61 154402 (in Chinese) [黄丛亮, 冯妍卉, 张欣欣, 李威, 杨穆, 李静, 王戈 2012 61 154402]
[4] de la Mora M B, Bornacelli J, Nava R, Zanella R, Reyes-Esqueda J A 2014 J. Lumin. 146 247
[5] Purnomo E H, van den Ende D, Vanapalli S A, Mugele F 2008 Phys. Rev. Lett. 101 238301
[6] Dhont J K G 1996 An Introduction to Dynamics of Colloids (Amsterdam: Elsevier) pp327-329
[7] Brene B J, Pecora R 1976 Dynamic Light Scattering (New York: John Wiley and sons) pp1-6
[8] Xia H, Ishii K, Iwaii T, Li H J Yang B C 2008 Appl. Opt. 47 1257
[9] Xia H, Miao C X, Cheng J W, Tao S H, Pang R Y, Wu X Y 2012 Appl. Opt. 51 3263
[10] Xia H, Li H J, Yang B C, Ishii K, Iwai T 2008 Opt. Commun. 281 1331
[11] Ishii K, Yoshida R, Iwai T 2005 Opt. Lett. 30 555
[12] Zhong C, Chen Z Q, Yang W G, Xia H 2013 Acta Phys. Sin. 62 214207 (in Chinese) [钟诚, 陈智全, 杨伟国, 夏辉 2013 62 214207]
[13] Yang W G, Zhong C, Xia H 2014 Acta Phys. Sin. 63 214705 (in Chinese) [杨伟国, 钟诚, 夏辉 2014 63 214705]
[14] Brinkman H C 1949 Appl. Sci. Res. 1 27
[15] Vanni M 2000 Chem. Eng. Sci. 55 685
Catalog
Metrics
- Abstract views: 5645
- PDF Downloads: 134
- Cited By: 0