Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Molecules structure and viscosity relationship of nematic liquid crystal and BPNN-QSAR model

Chen Hong-Mei Li Shi-Wei Li Kai-Jing Zhang Zhi-Yong Chen Hao Wang Ting-Ting

Citation:

Molecules structure and viscosity relationship of nematic liquid crystal and BPNN-QSAR model

Chen Hong-Mei, Li Shi-Wei, Li Kai-Jing, Zhang Zhi-Yong, Chen Hao, Wang Ting-Ting
PDF
HTML
Get Citation
  • Nematic liquid crystal materials designed for optics, microwave communication tuning, etc. need high response speed, which is related to the rotational viscosity and the birefringent index of the liquid crystal. In order to achieve a wide tuning range of phase modulation, the nematic liquid crystals often employ large π-electron conjugated systems and large polar groups to enhance the birefringence and dielectric anisotropy of the liquid crystal molecule, which, however, increases the viscosity of the liquid crystal material, deteriorating the response speed of the microwave device. Herein, we explore the viscosity of the nematic liquid crystal from the perspective of liquid crystal compound structure by testing the viscosity of our designed and synthesized forty-two different nematic liquid crystals by using a rotating rheometer at 25 ℃. To the best of our knowledge, the BPNN-QSAR quantitative structure-activity model between nematic liquid crystal molecular structure and viscosity is established for the first time. The correlation coefficient between the predicted value and the experimental value is q2 = 0.607 > 0.5, indicating that the model can be used to predict the viscosity performances of liquid crystal compounds. Besides, the molecular structure descriptors affecting the viscosity properties are explored. Based on the practical application and this model, seven liquid crystal molecules of two series with large birefringent index are designed and tested. The viscosity predicted by the BPNN model is smaller than that of the molecules of the same type and matches with the measured viscosity.
      Corresponding author: Wang Ting-Ting, 1125364902@qq.com
    • Funds: Project supported by the National Equipment Development Department Pre-research Fund (Grant No. 61409230701).
    [1]

    Demus D, Goodbye J W, Gray G W 1998 Handbook of Liquid Crystals Chichester (Wiley-VCH) p237

    [2]

    杨傅子 2008 物理学进展 28 107Google Scholar

    Yang F Z 2008 Prog. Phys. 28 107Google Scholar

    [3]

    曹召良, 穆全全, 胡立发 2008 液晶与显示 23 157Google Scholar

    Cao Z L, Mu Q Q, Hu L F 2008 Liq. Cryst. Disp. 23 157Google Scholar

    [4]

    李潭, 王震, 张智勇 2017 液晶与显示 32 862Google Scholar

    Li T, Wang Z, Zhang Z Y 2017 Liq. Cryst. Disp. 32 862Google Scholar

    [5]

    Qiu L L, Zhu L, Xu Y 2020 IEEE T. Antenn. Progag. 685680Google Scholar

    [6]

    Robert C, Zbigniew C, Yuriy G 2018 Liq. Cryst. Rev. 6 17Google Scholar

    [7]

    Alihosseini F, Ahmadi V, Mir A 2015 Liq. Cryst. 42 1638Google Scholar

    [8]

    Jiang D, Liu Y, Li X 2019 IEEE Access 7 126265Google Scholar

    [9]

    Kundtz N 2014 Microwave 57 56

    [10]

    Nishikawa H, Shiroshita K, Higuchi H 2017 Adv. Mater. 29 1702354Google Scholar

    [11]

    Mandle R J, Cowling S J, Goodby J W 2017 Phys. Chem. Chem. Phys. 19 11429Google Scholar

    [12]

    Zhao X, Zhou J 2021 Proc. Natl. Acad. Sci. 118 21111Google Scholar

    [13]

    赵秀虎, 黄明俊, Satoshiay A 2023 液晶与显示 38 77Google Scholar

    Zhao X H, Huang M J, Satoshiay A 2023 Liq. Cryst. Disp. 38 77Google Scholar

    [14]

    Li B X, Xiao R L, Paladugu S 2019 Opt. Express 27 3861Google Scholar

    [15]

    杨槐, 王萌, 张兰英 2015 CN 106701105 B 9

    Yang H, Wang M, Zhang L Y 2015 CN Patent 106701105 B 9

    [16]

    高鸿锦 2011 液晶化学 (北京: 清华大学出版社)第48页

    Gao J H 2011 Liquid Crystals Chemistry (Beijing: Qinghua University Press) p48

    [17]

    Chen C Y, Tsai T R, Pan C L, Pan R P 2003 Appl. Phys. Lett. 83 4497Google Scholar

    [18]

    Reuter M G K, Garbat K, Vieweg N, Fischer B N, Dąbrowski R, Koch M, Dziaduszek J, Urban S 2013 J. Mater. Chem. C 1 4457Google Scholar

    [19]

    张智勇, 刘可庆, 戴志群 2014 液晶与显示 29 873Google Scholar

    Zhang Z Y, Liu K Q, Dai Z Q 2014 Liq. Cryst. Disp. 29 873Google Scholar

    [20]

    Herman J, Dziaduszek J, Dąbrowski R 2013 Liq. Cryst. 40 1174Google Scholar

    [21]

    张然, 彭增辉, 刘永刚 2009 液晶与显示 6 789

    Zhang R, Peng Z H, Liu Y G 2009 Liq. Cryst. Disp. 6 789

    [22]

    Bock F J, Kneppe H, Schneider F 1986 Liq. Cryst. 1 239Google Scholar

    [23]

    Belyaev V V 1989 Russ. Chem. Rev. 58 917Google Scholar

    [24]

    Gauza S, Jiao M, Wu S T 2008 Liq. Cryst. 35 1401Google Scholar

    [25]

    Gauza S, Kula P, Liang X 2009 Mol. Cryst. Liq. Cryst. 509 47Google Scholar

    [26]

    刘运, 张智勇, 任占冬 2010 液晶与显示 4 490Google Scholar

    Liu Y, Zhang Z Y, Ren Z D 2010 Liq. Cryst. Disp. 4 490Google Scholar

    [27]

    Deng M M, Wang Y, Zhang Z 2012 Chin. J. Chem. 29 1093Google Scholar

    [28]

    Soltani T, Fouzai M, Dhaoudi H 2016 Phase Transi. 89 622Google Scholar

    [29]

    Bulsara A R, Maren A J, Schmera G 1993 Biol. Cybern. 70 145Google Scholar

    [30]

    袁永娜 2010 博士学位论文(兰州: 兰州大学)

    Yuan Y N 2010 Ph. D. Dissertation (Lanzhou: Lanzhou University

    [31]

    Hansch C, Steward A R 1964 J. Med. Chem. 7 691Google Scholar

    [32]

    王婷婷, 戴康, 王展, 高新蕾 2014 华中师范大学学报 48 379Google Scholar

    Wang T T, Dai K, Wang Z, Gao X L 2014 J. Central China Normal Univ. 48 379Google Scholar

    [33]

    Dąbrowski R, Dziaduszek J, Ziółek A 2007 Opto-Electro. Rev. 15 47Google Scholar

    [34]

    Li J, Hu M, Chen R 2021 J. Mol. Liq. 325 115236Google Scholar

    [35]

    莫玲超, 梁晓琴, 安忠维 2013 应用化学 30 861Google Scholar

    Mo L C, Liang X Q, An Z W 2013 Appl. Chem. 30 861Google Scholar

    [36]

    王婷婷, 戴康, 王展 2017 摩擦学学报 37 495Google Scholar

    Wang T T, Dai K, Wang Z 2017 J. Frict. 37 495Google Scholar

    [37]

    王登菊, 周如金, 郎春燕 2012 计算机与应用化学 29 457Google Scholar

    Wang D J, Zhou R J, Lang C Y 2012 Comput. Appl. Chem. 29 457Google Scholar

    [38]

    Hall L H, Mohney B, Kier L B 1991 J. Chem. Inf. Comp. Sci. 31 76Google Scholar

    [39]

    Hall L H, Kier L B 2000 J. Chem. Inf. Comp. Sci. 40 784Google Scholar

    [40]

    金印 2019 硕士学位论文(成都: 电子科技大学)

    Jin Y 2019 M. S. Thesis (Chengdu: University of Electronic Science and Technology of China

  • 图 1  黏度量度VM 的试验值与预测值

    Figure 1.  Experimental and predicted values of VM.

    图 2  两组同系物液晶分子的黏度量度VM和Shadow-Xlength与Num-RotatableBonds数值

    Figure 2.  Shadow-Xlength, Num-RotatableBonds and VM for two groups of liquid crystal compounds.

    表 1  液晶化合物相变温度及25 ℃测试黏度值

    Table 1.  Phase transition temperature and 25 ℃ test viscosity value of liquid crystal compounds.

    序号 化合物 分子结构 分子量/(g·mol–1) 混晶黏度η/
    (mPa·s–1)
    相变温度T/℃
    1 3CC2 236.25 19.647 Cr –8.3 N 93.0 Iso
    2 3CC4 264.28 20.983 Cr –10.9 N 66.8 Iso
    3 5CPF 248.19 23.914 Liquid
    4 3CPO1 232.18 21.619 Cr 32.0 Iso
    5 5PP1 238.17 22.624 Cr 48.0 Iso
    6 3GPS 271.08 24.313 Cr 45.0 Iso
    7 2CPUS 357.14 23.961 Cr 50.0 N 175.0 Iso
    8 5CPUS 399.18 24.874 Cr 50.5 N 196.3 Iso
    9 3PGUF 344.12 24.694 Cr 62.5 Iso
    10 5PGUF 372.15 25.021 Cr 56.4 Iso
    11 5PGUS 411.13 26.486 Cr 57.4 N 159.2 Iso
    12 5CPGUF 454.23 25.983 Cr 62.23 S 70
    N 215 Iso
    13 5CPGUS 493.21 26.400 Cr 71.53 N 234.15 Iso
    14 5PGUOCF3 438.14 26.242 Cr 47.4 N 69.3 Iso
    15 5CPGUOCF3 520.22 26.558 Cr 58.10 S 82.6
    N 230.35 Iso
    16 4PGPUF 434.17 24.884 Cr 96.8
    SmC 111.9
    SmA 214.6
    N 231.4 Iso
    17 5PP(2)GIP4 478.30 26.865 Cr 53.55 S 72.65
    N 109.84 Iso
    18 3PUQUF 428.10 25.191 Cr 47.2 Iso
    19 3PGUQUF 522.12 26.205 Cr 88 N 135 Iso
    20 3CEPC3 370.29 21.039 Cr 116.7 N 205.9 Iso
    21 2CEPPN 333.17 21.072 Cr 89.0 N 245.6 Iso
    22 3CPEP3 364.24 22.042 Cr 100.7 N 202.9 Iso
    23 3CPEGN 365.18 23.498 Cr 107.1 N 214.4 Iso
    24 2PEPN 251.09 20.946 Cr 77.6 N 80.9 Iso
    25 3PEPN 265.11 22.869 Cr 108.1 N 113.5 Iso 51.9 N
    26 4PEPN 279.13 24.478 Cr 71.3 N 74.2 Iso
    27 3PTGS 295.08 22.476 Cr 55.22 S 69.37 Iso
    28 5PTGS 323.11 23.248 Cr 50.59 N 90.59 Iso
    29 7PTGS 351.15 24.016 Cr 41.98 N 45.06 Iso
    30 5PTPO2 292.18 21.512 Cr 65.6 N 95.3 Iso 88.3 N
    31 5PTUS 341.1 22.577 Cr 43.99 Iso
    32 5CPTUS 423.18 22.974 Cr 62 N 228 Iso
    33 5PPTUS 417.14 23.809 Cr 55.0 S 119.0 N 208.5 Iso
    34 4PUTGS 421.11 22.559 Cr 93 Iso
    35 2PTPP3 360.17 22.768 Cr 73.5 N 186 Iso
    36 3PTPP2 360.17 22.583 Cr 73 N 189 Iso
    37 3PTPP4 388.20 23.682 Cr 66.1 S 88.0 N 169.5 Iso
    38 4PTPP3 388.29 23.445 Cr 38.5 S 60.0 N 174.0 Iso
    39 4PTGTP4 444.21 26.201 Cr 78 N 180 Iso
    40 4PTGTP5 458.22 26.918 Cr 72.12 N 172.81 Iso
    41 5PP(1)PUF 444.21 25.014 Cr 76.9 N 127.6 Iso
    42 5PPI(1)PUF 444.21 24.608 Cr 77.4 N 134 Iso
    43 5CB 249.15 25.010 Cr 24 N 35.3 Iso
    注: Cr, 各向异性晶体相; S, 近晶相; N, 向列相; Iso, 各向同性; SmA, SmA相态; SmC, SmC相态.
    DownLoad: CSV

    表 2  BPNN模型的结果

    Table 2.  Results of BPNN model.

    网络结构 R2 R2 (cross-validated) q2
    12-4-1 0.9238 0.5089 0.6070
    DownLoad: CSV

    表 3  训练组与测试组液晶化合物的试验黏度量度及预测黏度量度

    Table 3.  VMexpt and VMpred of liquid compounds in the training group and test group

    No. Compounds η/(mPa·s) $ {{\mathrm{VM}}}_{{\mathrm{expt}}} $ $ {{\mathrm{VM}}}_{{\mathrm{pred}}} $ $ \Delta {\mathrm{VM}} $ δ
    1* 3CC2 19.647 1.293 1.319 0.026 0.020
    2 3CC4 20.983 1.322 1.318 0.004 0.003
    3 5CPF 23.914 1.379 1.376 0.002 0.002
    4 3CPO1 21.619 1.335 1.336 0.001 0.001
    5 5PP1 22.624 1.355 1.357 0.002 0.001
    6 3GPS 24.313 1.386 1.363 0.023 0.017
    7* 2CPUS 23.961 1.380 1.378 0.002 0.001
    8 5CPUS 24.874 1.396 1.401 0.006 0.004
    9 3PGUF 24.694 1.393 1.396 0.004 0.002
    10* 5PGUF 25.021 1.398 1.405 0.006 0.004
    11 5PGUS 26.486 1.423 1.425 0.002 0.001
    12 5CPGUF 25.983 1.415 1.414 0.000 0.001
    13 5CPGUS 26.400 1.422 1.418 0.004 0.003
    14 5PGUOCF3 26.242 1.419 1.417 0.002 0.001
    15 5CPGUOCF3 26.558 1.424 1.424 –0.001 0.000
    16 4PGPUF 24.884 1.396 1.410 0.014 0.010
    17 5PP(2)GIP4 26.865 1.429 1.426 0.003 0.002
    18 3PUQUF 25.191 1.401 1.411 0.010 0.007
    19 3PGUQUF 26.205 1.418 1.411 0.007 0.005
    20 3CEPC3 21.039 1.323 1.326 0.003 0.002
    21 2CEPPN 21.072 1.324 1.320 0.003 0.003
    22 3CPEP3 22.042 1.343 1.344 0.001 0.001
    23 3CPEGN 23.498 1.371 1.365 0.006 0.004
    24 2PEPN 20.946 1.321 1.341 0.020 0.015
    25* 3PEPN 22.869 1.359 1.353 0.006 0.004
    26 4PEPN 24.478 1.389 1.365 0.024 0.017
    27 3PTGS 22.476 1.352 1.347 0.005 0.004
    28* 5PTGS 23.248 1.366 1.372 0.006 0.004
    29 7PTGS 24.916 1.396 1.401 0.004 0.004
    30 5PTPO2 21.512 1.333 1.337 0.004 0.003
    31 5PTUS 22.577 1.354 1.364 0.011 0.007
    32 5CPTUS 22.974 1.361 1.367 0.006 0.004
    33* 5PPTUS 23.809 1.377 1.427 0.050 0.036
    34 4PUTGS 22.559 1.353 1.364 0.011 0.008
    35 2PTPP3 22.768 1.357 1.353 0.004 0.003
    36 3PTPP2 22.583 1.354 1.345 0.009 0.007
    37* 3PTPP4 23.682 1.374 1.374 -0.001 0.001
    38 4PTPP3 23.445 1.370 1.366 0.004 0.003
    39* 4PTGTP4 26.201 1.418 1.398 0.020 0.014
    40 4PTGTP5 26.918 1.430 1.427 -0.003 0.002
    41 5PP(1)PUF 25.014 1.398 1.412 0.014 0.010
    42 5PPI(1)PUF 24.608 1.391 1.406 0.015 0.011
    注: *为测试组数据.
    DownLoad: CSV

    表 4  结构描述符及相关分子结构信息、对应敏感度

    Table 4.  Structural descriptors and related molecular structure information, and corresponding sensitivity.

    描述符 结构信息 敏感度
    ES-Count-aasC 代表具有两个芳香键和一个单键的碳的电拓扑状态 (Electrotopological State, Estate)和电子结构信息 0.999735
    Dipole-X 指示静电场中分子的强度和取向行为的3D电子描述符 0.947414
    Num-RotatableBonds 可旋转键, 定义为既不在环中又不在末端的重原子之间的单键, 即连接到仅与
    氢相连的重原子. 作为一种特殊情况, 酰胺C—N键是不可旋转的
    0.814023
    Shadow-Xlength 阴影X长度, 表征分子形状的一组几何描述符, 代表分子在x维度上的长度 0.307771
    ES-Sum-sssCH 计算具有三个单键的CH的电拓扑状态(Estate)总和 0.208536
    JX Balaban指数 0.118169
    ES-Count-tsC 代表具有一个三键的碳的电拓扑状态(Estate)计数 –0.707114
    ES-Count-ssCH2 代表具有两个单键的CH2的电拓扑状态(Estate)计数 –0.671564
    Wiener 维纳指数, 代表分子中所有重原子对之间存在的化学键的总和 –0.653192
    ES-Sum-sF 计算F原子的电拓扑状态(Estate) –0.400111
    ES-Count-sF F原子的电拓扑状态(Estate)计数 –0.400111
    ALogP 使用Ghose和Crippen发表的基于原子的方法计算辛醇-水分配系(LogP) –0.128786
    注: ES-Sum-xxx: 某原子电子结构和拓扑结构计算总和; ES-Count-xxx: 某种类型的原子在分子中出现的数目; -xxx中s, 单键; d, 双键; t, 三键; a, 芳香键[38,39].
    DownLoad: CSV
    Baidu
  • [1]

    Demus D, Goodbye J W, Gray G W 1998 Handbook of Liquid Crystals Chichester (Wiley-VCH) p237

    [2]

    杨傅子 2008 物理学进展 28 107Google Scholar

    Yang F Z 2008 Prog. Phys. 28 107Google Scholar

    [3]

    曹召良, 穆全全, 胡立发 2008 液晶与显示 23 157Google Scholar

    Cao Z L, Mu Q Q, Hu L F 2008 Liq. Cryst. Disp. 23 157Google Scholar

    [4]

    李潭, 王震, 张智勇 2017 液晶与显示 32 862Google Scholar

    Li T, Wang Z, Zhang Z Y 2017 Liq. Cryst. Disp. 32 862Google Scholar

    [5]

    Qiu L L, Zhu L, Xu Y 2020 IEEE T. Antenn. Progag. 685680Google Scholar

    [6]

    Robert C, Zbigniew C, Yuriy G 2018 Liq. Cryst. Rev. 6 17Google Scholar

    [7]

    Alihosseini F, Ahmadi V, Mir A 2015 Liq. Cryst. 42 1638Google Scholar

    [8]

    Jiang D, Liu Y, Li X 2019 IEEE Access 7 126265Google Scholar

    [9]

    Kundtz N 2014 Microwave 57 56

    [10]

    Nishikawa H, Shiroshita K, Higuchi H 2017 Adv. Mater. 29 1702354Google Scholar

    [11]

    Mandle R J, Cowling S J, Goodby J W 2017 Phys. Chem. Chem. Phys. 19 11429Google Scholar

    [12]

    Zhao X, Zhou J 2021 Proc. Natl. Acad. Sci. 118 21111Google Scholar

    [13]

    赵秀虎, 黄明俊, Satoshiay A 2023 液晶与显示 38 77Google Scholar

    Zhao X H, Huang M J, Satoshiay A 2023 Liq. Cryst. Disp. 38 77Google Scholar

    [14]

    Li B X, Xiao R L, Paladugu S 2019 Opt. Express 27 3861Google Scholar

    [15]

    杨槐, 王萌, 张兰英 2015 CN 106701105 B 9

    Yang H, Wang M, Zhang L Y 2015 CN Patent 106701105 B 9

    [16]

    高鸿锦 2011 液晶化学 (北京: 清华大学出版社)第48页

    Gao J H 2011 Liquid Crystals Chemistry (Beijing: Qinghua University Press) p48

    [17]

    Chen C Y, Tsai T R, Pan C L, Pan R P 2003 Appl. Phys. Lett. 83 4497Google Scholar

    [18]

    Reuter M G K, Garbat K, Vieweg N, Fischer B N, Dąbrowski R, Koch M, Dziaduszek J, Urban S 2013 J. Mater. Chem. C 1 4457Google Scholar

    [19]

    张智勇, 刘可庆, 戴志群 2014 液晶与显示 29 873Google Scholar

    Zhang Z Y, Liu K Q, Dai Z Q 2014 Liq. Cryst. Disp. 29 873Google Scholar

    [20]

    Herman J, Dziaduszek J, Dąbrowski R 2013 Liq. Cryst. 40 1174Google Scholar

    [21]

    张然, 彭增辉, 刘永刚 2009 液晶与显示 6 789

    Zhang R, Peng Z H, Liu Y G 2009 Liq. Cryst. Disp. 6 789

    [22]

    Bock F J, Kneppe H, Schneider F 1986 Liq. Cryst. 1 239Google Scholar

    [23]

    Belyaev V V 1989 Russ. Chem. Rev. 58 917Google Scholar

    [24]

    Gauza S, Jiao M, Wu S T 2008 Liq. Cryst. 35 1401Google Scholar

    [25]

    Gauza S, Kula P, Liang X 2009 Mol. Cryst. Liq. Cryst. 509 47Google Scholar

    [26]

    刘运, 张智勇, 任占冬 2010 液晶与显示 4 490Google Scholar

    Liu Y, Zhang Z Y, Ren Z D 2010 Liq. Cryst. Disp. 4 490Google Scholar

    [27]

    Deng M M, Wang Y, Zhang Z 2012 Chin. J. Chem. 29 1093Google Scholar

    [28]

    Soltani T, Fouzai M, Dhaoudi H 2016 Phase Transi. 89 622Google Scholar

    [29]

    Bulsara A R, Maren A J, Schmera G 1993 Biol. Cybern. 70 145Google Scholar

    [30]

    袁永娜 2010 博士学位论文(兰州: 兰州大学)

    Yuan Y N 2010 Ph. D. Dissertation (Lanzhou: Lanzhou University

    [31]

    Hansch C, Steward A R 1964 J. Med. Chem. 7 691Google Scholar

    [32]

    王婷婷, 戴康, 王展, 高新蕾 2014 华中师范大学学报 48 379Google Scholar

    Wang T T, Dai K, Wang Z, Gao X L 2014 J. Central China Normal Univ. 48 379Google Scholar

    [33]

    Dąbrowski R, Dziaduszek J, Ziółek A 2007 Opto-Electro. Rev. 15 47Google Scholar

    [34]

    Li J, Hu M, Chen R 2021 J. Mol. Liq. 325 115236Google Scholar

    [35]

    莫玲超, 梁晓琴, 安忠维 2013 应用化学 30 861Google Scholar

    Mo L C, Liang X Q, An Z W 2013 Appl. Chem. 30 861Google Scholar

    [36]

    王婷婷, 戴康, 王展 2017 摩擦学学报 37 495Google Scholar

    Wang T T, Dai K, Wang Z 2017 J. Frict. 37 495Google Scholar

    [37]

    王登菊, 周如金, 郎春燕 2012 计算机与应用化学 29 457Google Scholar

    Wang D J, Zhou R J, Lang C Y 2012 Comput. Appl. Chem. 29 457Google Scholar

    [38]

    Hall L H, Mohney B, Kier L B 1991 J. Chem. Inf. Comp. Sci. 31 76Google Scholar

    [39]

    Hall L H, Kier L B 2000 J. Chem. Inf. Comp. Sci. 40 784Google Scholar

    [40]

    金印 2019 硕士学位论文(成都: 电子科技大学)

    Jin Y 2019 M. S. Thesis (Chengdu: University of Electronic Science and Technology of China

  • [1] Wang Zi-Ling, Ye Jia-Yao, Huang Zhi-Jun, Song Zhen-Peng, Li Bing-Xiang, Xiao Rui-Lin, Lu Yan-Qing. Formation and annihilation of electrically driven defects in nematic liquid crystals with negative dielectric anisotropy. Acta Physica Sinica, 2024, 73(5): 056101. doi: 10.7498/aps.73.20231655
    [2] Wang Hao-Ran, Zhang Yin-Chuan, Hu Wei, Guo Qi. Saturable nonlinearity and bistable solitons in nematic liquid crystals. Acta Physica Sinica, 2023, 72(7): 074204. doi: 10.7498/aps.72.20222088
    [3] Liang De-Shan, Huang Hou-Bing, Zhao Ya-Nan, Liu Zhu-Hong, Wang Hao-Yu, Ma Xing-Qiao. Size effect of topological charge in disc-like nematic liquid crystal films. Acta Physica Sinica, 2021, 70(4): 044202. doi: 10.7498/aps.70.20201623
    [4] Zhang Ying, Zheng Yu, He Mao-Gang. Improvement of dynamic light scattering method for measurement of particle diameter and liquid viscosity. Acta Physica Sinica, 2018, 67(16): 167801. doi: 10.7498/aps.67.20180271
    [5] Shang Ji-Xiang, Zhao Yun-Bo, Hu Li-Na. Abnormal viscosity changes in high-temperature metallic melts. Acta Physica Sinica, 2018, 67(10): 106402. doi: 10.7498/aps.67.20172721
    [6] Hao Dan-Hui, Kong Fan-Jie, Jiang Gang. Structure and potential energy function of PuNO molecules. Acta Physica Sinica, 2015, 64(15): 153103. doi: 10.7498/aps.64.153103
    [7] An Bao-Lin, Lin Hong, Liu Qiang, Duan Yuan-Yuan. Viscosity measurements using a cylindrical resonator. Acta Physica Sinica, 2013, 62(17): 175101. doi: 10.7498/aps.62.175101
    [8] Liu Yong-Jun, Sun Wei-Min, Liu Xiao-Qi, Yao Li-Shuang, Lu Xing-Hai, Xuan Li. Investigation of the tunable laser of one-dimensional photonic crystal with dye-doped nematic liquid crystal defect layer. Acta Physica Sinica, 2012, 61(11): 114211. doi: 10.7498/aps.61.114211
    [9] Tang Xian-Zhu, Lu Xing-Hai, Peng Zeng-Hui, Liu Yong-Gang, Xuan Li. Theoretical approximation study on the helix structure of ferroelectric liquid crystal. Acta Physica Sinica, 2010, 59(6): 4001-4007. doi: 10.7498/aps.59.4001
    [10] Ren Chang-Yu, Sun Xiu-Dong, Pei Yan-Bo. Anisotropic diffraction pattern formation from a nematic liquid crystals film induced by low-power linearly polarized beam. Acta Physica Sinica, 2009, 58(1): 298-303. doi: 10.7498/aps.58.298.1
    [11] Wei Hong-Qing, Li Xiang-An, Long Zhi-Lin, Peng Jian, Zhang Ping, Zhang Zhi-Chun. Correlations between viscosity and glass-forming ability in bulk amorphous alloys. Acta Physica Sinica, 2009, 58(4): 2556-2564. doi: 10.7498/aps.58.2556
    [12] Zhang Ran, He Jun, Peng Zeng-Hui, Xuan Li. Molecular dynamics simulation of the rotational viscosity and its odd-even effect of nematic liquid crystals nCB(4-n-alkyl-4′-cyanobiphenyls, n=5—8). Acta Physica Sinica, 2009, 58(8): 5560-5566. doi: 10.7498/aps.58.5560
    [13] Kong Fan-Jie, Du Ji-Guang, Jiang Gang. The structure and potential energy function of PdCO molecule. Acta Physica Sinica, 2008, 57(1): 149-154. doi: 10.7498/aps.57.149
    [14] Yang Ping-Bao, Cao Long-Gui, Hu Wei, Zhu Ye-Qing, Guo Qi, Yang Xiang-Bo. Interactions between strong nonlocal optical spatial solitons in nematic liquid crystals. Acta Physica Sinica, 2008, 57(1): 285-290. doi: 10.7498/aps.57.285
    [15] Wang Zhen-Yu, Yang Yuan-Sheng, Tong Wen-Hui, Li Hui-Qiang, Hu Zhuang-Qi. A new model for calculating critical cooling rates of alloy systems based on viscosity calculation. Acta Physica Sinica, 2007, 56(3): 1543-1548. doi: 10.7498/aps.56.1543
    [16] Long Xue-Wen, Hu Wei, Zhang Tao, Guo Qi, Lan Sheng, Gao Xi-Cun. Theoretical investigation of propagation of nonlocal spatial soliton in nematic liquid crystals. Acta Physica Sinica, 2007, 56(3): 1397-1403. doi: 10.7498/aps.56.1397
    [17] Yan Shi-Ying. The molecular structure and potential energy function of the ground state of BH2 molecule. Acta Physica Sinica, 2006, 55(7): 3408-3412. doi: 10.7498/aps.55.3408
    [18] Zhan Kai-Yun, Pei Yan-Bo, Hou Chun-Feng. Observation of spatial solitons in nematic liquid crystals. Acta Physica Sinica, 2006, 55(9): 4686-4690. doi: 10.7498/aps.55.4686
    [19] Liu Hong, Wang Hui. Phase transition in biaxial nematic liquid crystal. Acta Physica Sinica, 2005, 54(3): 1306-1312. doi: 10.7498/aps.54.1306
    [20] Xue Wei-Dong, Wang Hong-Yan, Zhu Zheng-He, Zhang Guang-Feng, Zhou Le-Xi, Chen Chang-An, Sun Ying. . Acta Physica Sinica, 2002, 51(11): 2480-2484. doi: 10.7498/aps.51.2480
Metrics
  • Abstract views:  1905
  • PDF Downloads:  50
  • Cited By: 0
Publishing process
  • Received Date:  06 November 2023
  • Accepted Date:  22 December 2023
  • Available Online:  04 January 2024
  • Published Online:  20 March 2024

/

返回文章
返回
Baidu
map