搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于颗粒粒度信息分布特征的动态光散射加权反演

徐敏 申晋 黄钰 徐亚南 朱新军 王雅静 刘伟 高明亮

引用本文:
Citation:

基于颗粒粒度信息分布特征的动态光散射加权反演

徐敏, 申晋, 黄钰, 徐亚南, 朱新军, 王雅静, 刘伟, 高明亮

Weighting inversion of dynamic light scattering based on particle-size information distribution character

Xu Min, Shen Jin, Huang Yu, Xu Ya-Nan, Zhu Xin-Jun, Wang Ya-Jing, Liu Wei, Gao Ming-Liang
PDF
导出引用
  • 宽分布和双峰分布颗粒的准确反演是动态光散射技术至今未能有效解决的难题,尤其峰值位置比小于2:1且含有大粒径颗粒(350 nm)的双峰分布.造成这一难题的主要原因包括:1)单角度测量数据的粒度信息含量不足;2)常规反演方法对测量数据的噪声抑制以及粒度信息利用缺乏针对性.对测量数据(即光强自相关函数)的研究发现,数据噪声主要分布在长延迟时段,而粒度信息集中分布在衰减延迟时段.基于此,本文提出了采用粒度信息分布为底数、调节参数为指数的权重系数对自相关函数进行加权反演的约束正则化方法.由于采用了与粒度信息分布一致的权重系数,该方法既充分利用了衰减延迟时段的粒度信息,又有效地抑制了长延迟时段的数据噪声.不同噪声水平下,宽分布和双峰分布颗粒体系的反演结果表明,与常规反演方法相比,这一方法可以获得更为准确的宽分布和近双峰分布的反演结果.
    In particle sizing with dynamic light scattering (DLS) technique, the determination of particle size distribution (PSD), via inversing the autocorrelation function (ACF) of scattering light, is usually limited by the inherently low particle size information in ACF data and, the lack of targeted inversion on the noise restriction and the particle size information utilization. For the ACF data in DLS measurement, most of particle size information is centrally contained in the decay section and the larger noise is contained in the larger delay section. However, no consideration of the particle size information distribution in the ACF data for the routine inversion method increases the difficulty of the accurate PSD inversion, especially the broad and bimodal PSDs. Until now, it is still a difficult problem to obtain an accurate recovery of the broad and bimodal PSDs, specifically the bimodal PSD with a peak position ratio less than 2:1 and containing large particles (350 nm). In this paper, a character-weighted constrained regularization (CW-CR) method is proposed, in which, the particle size information distribution in the ACF as the base and the adjustment parameter as the exponent are used to weight the ACF. By using the weighting coefficients corresponding to the particle size information distribution along the delay time in ACF, the CW-CR method can enhance the utilization of the particle size information in ACF data, and effectively weaken the effect of noise at large delay time. With this method, the closely spaced bimodal PSD (with nominal diameters of m 350 nm:500 nm in simulation, m 300 nm:502 nm in experiment) is recovered successfully at a high noise level of 0.01. It shows that the CW-CR method, combined with the multiangle DLS (MDLS) measurement, can effectively make the best use of the particle size information hiding in the noisy ACF data, and improve the resolution of bimodal PSD as well as the capability of noise suppression. So it can make the advantages of MDLS more highlighted than the routine method in the recovery of the broad and bimodal PSDs.
      通信作者: 申晋, shenjin@sdut.edu.cn
    • 基金项目: 国家自然科学基金(批准号:61601266)和山东省自然科学基金(批准号:ZR2018MF032,ZR2017LF026,ZR2016EL16)资助的课题.
      Corresponding author: Shen Jin, shenjin@sdut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61601266) and the Natural Science Foundation of Shandong Province, China (Grant Nos. ZR2018MF032, ZR2017LF026, ZR2016EL16).
    [1]

    Pecora R 1985 Dynamic Light Scattering: Applications of Photon Correlation Spectroscopy (New York: Plenum) pp1-6

    [2]

    Goll J H, Stock G B 1977 Biophys. J. 19 265

    [3]

    Gulari E, Gulari E, Tsunashima Y, Chu B 1979 J. Chem. Phys. 70 3965

    [4]

    Cummins P G, Staples E J 1987 Langmuir 3 1109

    [5]

    Bryant G, Thomas J C 1995 Langmuir 11 2480

    [6]

    Vega J R, Gugliotta L M, Gonzalez V D G, Meira G R 2003 J. Colloid Interf. Sci. 261 74

    [7]

    Liu X, Shen J, Thomas J C, Shi S, Sun X, Liu W 2012 Appl. Opt. 51 846

    [8]

    Buttgereit R, Roths T, Honerkamp J, Aberle L B 2001 Phys. Rev. E 64 1515

    [9]

    Gugliotta L M, Vega J R, Meira G R 2000 J. Colloid Interf. Sci. 228 14

    [10]

    Clementi L A, Vega J R, Gugliotta L M, Orlande H R B 2011 Chemometr. Intell. Lab. 107 165

    [11]

    Naiim M, Boualem A, Ferre C, Jabloun M, Jalocha A, Ravier P 2015 Soft Matter 11 28

    [12]

    Gugliotta L M, Stegmayer G S, Clementi L A, Gonzalez V D G, Minari R J, Leiza J R, Vega J R 2009 Part. Part. Syst. Char. 26 41

    [13]

    Liu X, Shen J, Thomas J C, Clementi L A, Sun X 2012 J. Quant. Spectrosc. Ra. 113 489

    [14]

    Zhu X, Shen J, Song L 2015 IEEE Photon. Tech. L. 28 311

    [15]

    Xu M, Shen J, Thomas J C, Huang Y, Zhu X L, Clementi A, Vega J R 2018 Opt. Express 26 15

    [16]

    Mie G 1908 Ann. Phys. New York 25 377

    [17]

    Wiscombe W J 1980 Appl. Opt. 19 1505

    [18]

    Frisken B J 2001 Appl. Opt. 40 4087

    [19]

    Mailer A G, Clegg P S, Pusey P N 2015 J. Phys.: Condens. Matter 27 145102

    [20]

    Hansen P C, O'Leary D P 1993 SIAM J. Sci. Comput. 14 1487

    [21]

    Rezghi M, Hosseini S M 2009 J. Comput. Appl. Math. 231 914

    [22]

    Thomas J C 1987 J. Colloid Interf. Sci. 117 187

  • [1]

    Pecora R 1985 Dynamic Light Scattering: Applications of Photon Correlation Spectroscopy (New York: Plenum) pp1-6

    [2]

    Goll J H, Stock G B 1977 Biophys. J. 19 265

    [3]

    Gulari E, Gulari E, Tsunashima Y, Chu B 1979 J. Chem. Phys. 70 3965

    [4]

    Cummins P G, Staples E J 1987 Langmuir 3 1109

    [5]

    Bryant G, Thomas J C 1995 Langmuir 11 2480

    [6]

    Vega J R, Gugliotta L M, Gonzalez V D G, Meira G R 2003 J. Colloid Interf. Sci. 261 74

    [7]

    Liu X, Shen J, Thomas J C, Shi S, Sun X, Liu W 2012 Appl. Opt. 51 846

    [8]

    Buttgereit R, Roths T, Honerkamp J, Aberle L B 2001 Phys. Rev. E 64 1515

    [9]

    Gugliotta L M, Vega J R, Meira G R 2000 J. Colloid Interf. Sci. 228 14

    [10]

    Clementi L A, Vega J R, Gugliotta L M, Orlande H R B 2011 Chemometr. Intell. Lab. 107 165

    [11]

    Naiim M, Boualem A, Ferre C, Jabloun M, Jalocha A, Ravier P 2015 Soft Matter 11 28

    [12]

    Gugliotta L M, Stegmayer G S, Clementi L A, Gonzalez V D G, Minari R J, Leiza J R, Vega J R 2009 Part. Part. Syst. Char. 26 41

    [13]

    Liu X, Shen J, Thomas J C, Clementi L A, Sun X 2012 J. Quant. Spectrosc. Ra. 113 489

    [14]

    Zhu X, Shen J, Song L 2015 IEEE Photon. Tech. L. 28 311

    [15]

    Xu M, Shen J, Thomas J C, Huang Y, Zhu X L, Clementi A, Vega J R 2018 Opt. Express 26 15

    [16]

    Mie G 1908 Ann. Phys. New York 25 377

    [17]

    Wiscombe W J 1980 Appl. Opt. 19 1505

    [18]

    Frisken B J 2001 Appl. Opt. 40 4087

    [19]

    Mailer A G, Clegg P S, Pusey P N 2015 J. Phys.: Condens. Matter 27 145102

    [20]

    Hansen P C, O'Leary D P 1993 SIAM J. Sci. Comput. 14 1487

    [21]

    Rezghi M, Hosseini S M 2009 J. Comput. Appl. Math. 231 914

    [22]

    Thomas J C 1987 J. Colloid Interf. Sci. 117 187

  • [1] 邓娈, 杜报, 蔡洪波, 康洞国, 朱少平. 在质子照相中利用Abel逆变换反演等离子体自生磁场结构.  , 2022, 71(24): 245203. doi: 10.7498/aps.71.20221848
    [2] 屈科, 朴胜春, 朱凤芹. 一种基于内潮动力特征的浅海声速剖面构建新方法.  , 2019, 68(12): 124302. doi: 10.7498/aps.68.20181867
    [3] 周彦玲, 范军, 王斌. 塑料类高分子聚合物材料水中目标声学参数反演.  , 2019, 68(21): 214301. doi: 10.7498/aps.68.20190991
    [4] 夏敏, 汪鹏, 张晓虎, 葛昌纯. 电极感应熔化气雾化制粉技术中非限制式喷嘴雾化过程模拟.  , 2018, 67(17): 170201. doi: 10.7498/aps.67.20180584
    [5] 张颖, 郑宇, 何茂刚. 对利用动态光散射法测量颗粒粒径和液体黏度的改进.  , 2018, 67(16): 167801. doi: 10.7498/aps.67.20180271
    [6] 夏辉, 杨伟国. 浓悬浮液中纳米SiO2团聚体的渗透率.  , 2016, 65(14): 144203. doi: 10.7498/aps.65.144203
    [7] 陈洁, 张淳民, 王鼎益, 张兴赢, 王舒鹏, 栗彦芬, 刘冬冬, 荣飘. 地表反照率对短波红外探测大气CO2的影响.  , 2015, 64(23): 239201. doi: 10.7498/aps.64.239201
    [8] 段晓亮, 王一博, 杨慧珠. 基于逆散射理论的地震波速度正则化反演.  , 2015, 64(7): 078901. doi: 10.7498/aps.64.078901
    [9] 李伦, 吴雄斌. 高频地波雷达多站浅海水深与海流反演.  , 2014, 63(11): 118404. doi: 10.7498/aps.63.118404
    [10] 李伦, 吴雄斌, 徐兴安. 基于优化理论的高频地波雷达海浪参数反演.  , 2014, 63(3): 038403. doi: 10.7498/aps.63.038403
    [11] 韩月琪, 钟中, 王云峰, 杜华栋. 梯度计算的集合变分方案及其在大气Ekman层湍流系数反演中的应用.  , 2013, 62(4): 049201. doi: 10.7498/aps.62.049201
    [12] 林瑜, 杨光参, 王艳伟. DNA平衡离子凝聚的动态光散射分析.  , 2013, 62(11): 118702. doi: 10.7498/aps.62.118702
    [13] 李海燕, 胡云安, 任建存, 朱敏, 刘亮. 非匹配不确定交叉严反馈超混沌系统神经网络反演同步.  , 2012, 61(14): 140502. doi: 10.7498/aps.61.140502
    [14] 何然, 黄思训, 周晨腾, 姜祝辉. 遗传算法结合正则化方法反演海洋大气波导.  , 2012, 61(4): 049201. doi: 10.7498/aps.61.049201
    [15] 丁世敬, 葛德彪, 申宁. 复合介质等效电磁参数的数值研究.  , 2010, 59(2): 943-948. doi: 10.7498/aps.59.943
    [16] 杨坤德, 马远良. 利用海底反射信号进行地声参数反演的方法.  , 2009, 58(3): 1798-1805. doi: 10.7498/aps.58.1798
    [17] 张新明, 刘家琦, 刘克安. 一维双相介质孔隙率的小波多尺度反演.  , 2008, 57(2): 654-660. doi: 10.7498/aps.57.654
    [18] 孙贤明, 哈恒旭. 基于反射太阳光反演气溶胶光学厚度和有效半径.  , 2008, 57(9): 5565-5570. doi: 10.7498/aps.57.5565
    [19] 魏 兵, 葛德彪. 各向异性有耗介质板介电系数和电导率的反演.  , 2005, 54(2): 648-652. doi: 10.7498/aps.54.648
    [20] 梁子长, 金亚秋. 一层非球形粒子散射的标量辐射传输迭代解的求逆.  , 2002, 51(10): 2239-2244. doi: 10.7498/aps.51.2239
计量
  • 文章访问数:  6230
  • PDF下载量:  158
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-11-03
  • 修回日期:  2018-04-18
  • 刊出日期:  2018-07-05

/

返回文章
返回
Baidu
map