Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Progress of laser-driven quasi-isentropic compression study performed on SHENGUANG III prototype laser facility

Xue Quan-Xi Jiang Shao-En Wang Zhe-Bin Wang Feng Zhao Xue-Qing Yi Ai-Ping Ding Yong-Kun Liu Jing-Ru

Citation:

Progress of laser-driven quasi-isentropic compression study performed on SHENGUANG III prototype laser facility

Xue Quan-Xi, Jiang Shao-En, Wang Zhe-Bin, Wang Feng, Zhao Xue-Qing, Yi Ai-Ping, Ding Yong-Kun, Liu Jing-Ru
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The equation of state for solid at extreme pressure and relatively low temperature is an important topic in the study of astrophysics and fundamental physics of condensed matter. Direct laser-driven quasi-isentropic compression is a powerful method to achieve such extreme states which have been developed in recent years. A lot of researches have been done in Research Center of Laser Fusion in China since 2012, which are introduced in this article. The researches include an analytical isentropic compression model, a developed characteristic method, techniques for target manufacture, and experiments performed on SHENGUANG Ⅲ prototype laser facility. The analytical isentropic compression model for condensed matter is obtained based on hydrodynamic equations and a Murnaghan-form state equation. Using the analytical model, important parameters, such as maximum shockless region width, material properties, pressure pulse profile, and pressure pulse duration can be properly allocated or chosen, which is convenient for experimental estimation and design. The characteristic method is developed based on a Murnaghan-form isentropic equation and characteristics, which can be used for experimental design, simulation, and experimental data processing. Based on the above researches, several rounds of experiments have been performed to obtain better isentropic effect by upgrading the target configurations. Five kinds of target configurations have been used up to now, which are three-step aluminum target, CH-coated planar aluminum target, CH-coated three-step aluminum target, planar aluminum target with Au blocking layer, and three-step aluminum target with Au blocking layer. The rear surface of three-step aluminum target is found to be destroyed when the loading pressure rises up to 194 GPa, and weak shock appears in CH-coated planar aluminum target and CH-coated three-step aluminum target. Besides, velocity interferometer system for any reflector (VISAR) fingers are found to decrease when the pressure rises up to about 400 GPa and disappears at 645 GPa. By reducing laser intensity, the whole interface velocities on three steps are obtained in the CH-coated three-step aluminum target and a stress-density curve is calculated. In order to eliminate the weak shock, the target configurations are upgraded by changing the ablation layer and putting a gold blocking layer after it. The experimental results show that the weak shock is eliminated and much clearer VISAR fingers are obtained when pressure rises to as high as 570 GPa.
      Corresponding author: Xue Quan-Xi, quanxixue@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11475154, 11305156), Science Challenge Project (Grant No. TZ2016001), and the Foundation of key Laboratory of China (Grant No. SKLLIM1606).
    [1]

    Smith R F, Eggert J H, Jeanloz R, Duffy T S, Braun D G, Patterson J R, Rudd R E, Biener J, Lazicki A E, Hamza A V, Wang J, Braun T, Benedict L X, Celliers P M, Collins G W 2014 Nature 511 330

    [2]

    Laio A, Bernard S, Chiarotti G, Scandolo S, Tosatti E 2000 Science 287 1027

    [3]

    Remington B, Drake R P, Ryutov D D 2006 Rev. Mod. Phys. 78 755

    [4]

    Bradley D K, Eggert J H, Smith R F, Prisbrey S T, Hicks D G, Braun D G, Biener J, Hamza A, Rudd R E, Collins G 2009 Phys. Rev. Lett. 102 075503

    [5]

    Guillot T 1999 Science 286 72

    [6]

    Lindl J 1995 Phys. Plasmas 2 3933

    [7]

    Davis J P 2006 J. Appl. Phys. 99 103512

    [8]

    Reisman D B, Wolfer W G, Elsholz A, Furnish M D 2003 J. Appl. Phys. 93 8952

    [9]

    Baer M R, Hall C A, Gustavsen R L, Hooks D E, Sheffield S A 2007 J. Appl. Phys. 101 034906

    [10]

    Ray A, Menon S V G 2009 J. Appl. Phys. 105 064501

    [11]

    Hawke R S, Duerre D E, Huebel J G, Keeler R N, Wallace W C 1978 J. Appl. Phys. 49 3298

    [12]

    Lorenz K T, Edwards M J, Jankowski A F, Pollaine S M, Smith R F, Remington B A 2006 High Energy Density Physics 2 113

    [13]

    Edwards J, Lorenz K T, Remington B A, Pollaine S, Colvin J, Braun D, Lasinski B F, Reisman D, McNaney J M, Greenough J A, Wallace R, Louis H, Kalantar D 2004 Phys. Rev. Lett. 92 075002

    [14]

    Smith R F, Pollaine S M, Moon S J, Lorenz K T, Celliers P M, Eggert J H, Park H S, Collins G W 2007 Phys. Plasma 14 057105

    [15]

    Smith R F, Eggert J H, Rudd R E, Swift D C, Bolme C A, Collins G W 2011 J. Appl. Phys. 11 0123515

    [16]

    Shu H, Fu S Z, Huang X G, Ye J J, Zhou H Z, Xie Z Y, Long T 2012 Acta Phys. Sin. 61 114102 (in Chinese)[舒桦, 傅思祖, 黄秀光, 叶君建, 周华珍, 谢志勇, 龙滔 2012 61 114102]

    [17]

    Xue Q, Wang Z, Jiang S, Ye X, Liu J 2014 AIP Adv. 4 057127

    [18]

    Xue Q, Jiang S, Wang Z, Wang F, Hu Y, Ding Y 2016 Physica B 495 64

    [19]

    Xue Q X, Jiang S E, Wang Z B, Zhang H, Ye X S, Zhang Y S 2014 Nuclear Fusion and Plasma Physics 34 17 (in Chinese)[薛全喜, 江少恩, 王哲斌, 章欢, 叶锡生, 张永生 2014 核聚变与等离子体物理 34 17]

    [20]

    Xue Q X, Jiang S E, Wang Z B, Zhang H, Ye X S, Zhang Y S 2013 High Power Laser and Particle Beam 25 2891 (in Chinese)[薛全喜, 江少恩, 王哲斌, 章欢, 叶锡生, 张永生 2013 强激光与粒子束 25 2891]

    [21]

    Xue Q, Wang Z, Jiang S, Wang F, Ye X, Liu J 2014 Phys. Plasmas 21 072709

    [22]

    Zhang Z Y, Zhao Y, Xue Q X, Wang F, Yang J M 2015 Acta Phys. Sin. 64 205202 (in Chinese)[张志宇, 赵阳, 薛全喜, 王峰, 杨家敏 2015 64 205202]

    [23]

    Wang F, Peng X S, Xue Q X, Xu T, Wei H Y 2015 Acta Phys. Sin. 64 085202 (in Chinese)[王峰, 彭晓世, 薛全喜, 徐涛, 魏惠月 2015 64 085202]

    [24]

    Hawke R S, Duerre D E, Huebel J G, Klapper H, Steinberg D J, Keeler R N 1972 J. Appl. Phys. 43 2734

    [25]

    Nuckolls J, Wood L, Thiessen A, Zimmerman G 1972 Nature 239 139

    [26]

    Atzeni S, Meyer-ter-Vehn J 2004 The Physics of Inertial Fusion (London:Oxford University Press) p148

    [27]

    Davis J P, Deeney C, Knudson M D, Raymond W L, Timothy D P, David E B 2005 Phys. Plasmas 12 056310

    [28]

    Swift D C, Kraus R G, Loomis E N, HicksD G, McNaney J M, Johnson R P 2008 Phys. Rev. E 78 066115

    [29]

    Li W 2003 One-Dimensional Nonsteady Flow and Shock Waves (Beijing:Defense Industry Press) pp36-55 (in Chinese)[李维新 2003 一维不定常流与冲击波(北京:国防工业出版社)第3655页]

    [30]

    Ramis R, Schmaltz R, Meyer-ter-Vehn J 1988 Comp. Phys. Commun. 49 475

    [31]

    Seaman L 1974 J. Appl. Phys. 45 4303

    [32]

    Rothman S D, Davis J P, Maw J, Robinson C M, Parker K, Palmer J 2005 J. Phys. D:Appl. Phys. 38 733

    [33]

    Hayes D 2001 Bakward Intergration of the Equations of Motion to Correct for Free Surface Perturbations (Sandia National Laboratories Report) SAND2001-1440

    [34]

    Rothman S D, Maw J 2006 J. Phys. IV France 134 745

    [35]

    Reisman D B, Wolfer W G, Elsholz A, Furnish M D 2003 J. Appl. Phys. 93 8952

    [36]

    Davis J P 2006 J. Appl. Phys. 99 103512

    [37]

    Kerley G I 1987 Int. J. Impact Eng. 5 441

    [38]

    Smith R F, Eggert J H, Jankowski A, Celliers P M, Edwards M J, Gupta Y M, Asay J R, Collins G W 2007 Phys. Rev. Lett. 98 065701

  • [1]

    Smith R F, Eggert J H, Jeanloz R, Duffy T S, Braun D G, Patterson J R, Rudd R E, Biener J, Lazicki A E, Hamza A V, Wang J, Braun T, Benedict L X, Celliers P M, Collins G W 2014 Nature 511 330

    [2]

    Laio A, Bernard S, Chiarotti G, Scandolo S, Tosatti E 2000 Science 287 1027

    [3]

    Remington B, Drake R P, Ryutov D D 2006 Rev. Mod. Phys. 78 755

    [4]

    Bradley D K, Eggert J H, Smith R F, Prisbrey S T, Hicks D G, Braun D G, Biener J, Hamza A, Rudd R E, Collins G 2009 Phys. Rev. Lett. 102 075503

    [5]

    Guillot T 1999 Science 286 72

    [6]

    Lindl J 1995 Phys. Plasmas 2 3933

    [7]

    Davis J P 2006 J. Appl. Phys. 99 103512

    [8]

    Reisman D B, Wolfer W G, Elsholz A, Furnish M D 2003 J. Appl. Phys. 93 8952

    [9]

    Baer M R, Hall C A, Gustavsen R L, Hooks D E, Sheffield S A 2007 J. Appl. Phys. 101 034906

    [10]

    Ray A, Menon S V G 2009 J. Appl. Phys. 105 064501

    [11]

    Hawke R S, Duerre D E, Huebel J G, Keeler R N, Wallace W C 1978 J. Appl. Phys. 49 3298

    [12]

    Lorenz K T, Edwards M J, Jankowski A F, Pollaine S M, Smith R F, Remington B A 2006 High Energy Density Physics 2 113

    [13]

    Edwards J, Lorenz K T, Remington B A, Pollaine S, Colvin J, Braun D, Lasinski B F, Reisman D, McNaney J M, Greenough J A, Wallace R, Louis H, Kalantar D 2004 Phys. Rev. Lett. 92 075002

    [14]

    Smith R F, Pollaine S M, Moon S J, Lorenz K T, Celliers P M, Eggert J H, Park H S, Collins G W 2007 Phys. Plasma 14 057105

    [15]

    Smith R F, Eggert J H, Rudd R E, Swift D C, Bolme C A, Collins G W 2011 J. Appl. Phys. 11 0123515

    [16]

    Shu H, Fu S Z, Huang X G, Ye J J, Zhou H Z, Xie Z Y, Long T 2012 Acta Phys. Sin. 61 114102 (in Chinese)[舒桦, 傅思祖, 黄秀光, 叶君建, 周华珍, 谢志勇, 龙滔 2012 61 114102]

    [17]

    Xue Q, Wang Z, Jiang S, Ye X, Liu J 2014 AIP Adv. 4 057127

    [18]

    Xue Q, Jiang S, Wang Z, Wang F, Hu Y, Ding Y 2016 Physica B 495 64

    [19]

    Xue Q X, Jiang S E, Wang Z B, Zhang H, Ye X S, Zhang Y S 2014 Nuclear Fusion and Plasma Physics 34 17 (in Chinese)[薛全喜, 江少恩, 王哲斌, 章欢, 叶锡生, 张永生 2014 核聚变与等离子体物理 34 17]

    [20]

    Xue Q X, Jiang S E, Wang Z B, Zhang H, Ye X S, Zhang Y S 2013 High Power Laser and Particle Beam 25 2891 (in Chinese)[薛全喜, 江少恩, 王哲斌, 章欢, 叶锡生, 张永生 2013 强激光与粒子束 25 2891]

    [21]

    Xue Q, Wang Z, Jiang S, Wang F, Ye X, Liu J 2014 Phys. Plasmas 21 072709

    [22]

    Zhang Z Y, Zhao Y, Xue Q X, Wang F, Yang J M 2015 Acta Phys. Sin. 64 205202 (in Chinese)[张志宇, 赵阳, 薛全喜, 王峰, 杨家敏 2015 64 205202]

    [23]

    Wang F, Peng X S, Xue Q X, Xu T, Wei H Y 2015 Acta Phys. Sin. 64 085202 (in Chinese)[王峰, 彭晓世, 薛全喜, 徐涛, 魏惠月 2015 64 085202]

    [24]

    Hawke R S, Duerre D E, Huebel J G, Klapper H, Steinberg D J, Keeler R N 1972 J. Appl. Phys. 43 2734

    [25]

    Nuckolls J, Wood L, Thiessen A, Zimmerman G 1972 Nature 239 139

    [26]

    Atzeni S, Meyer-ter-Vehn J 2004 The Physics of Inertial Fusion (London:Oxford University Press) p148

    [27]

    Davis J P, Deeney C, Knudson M D, Raymond W L, Timothy D P, David E B 2005 Phys. Plasmas 12 056310

    [28]

    Swift D C, Kraus R G, Loomis E N, HicksD G, McNaney J M, Johnson R P 2008 Phys. Rev. E 78 066115

    [29]

    Li W 2003 One-Dimensional Nonsteady Flow and Shock Waves (Beijing:Defense Industry Press) pp36-55 (in Chinese)[李维新 2003 一维不定常流与冲击波(北京:国防工业出版社)第3655页]

    [30]

    Ramis R, Schmaltz R, Meyer-ter-Vehn J 1988 Comp. Phys. Commun. 49 475

    [31]

    Seaman L 1974 J. Appl. Phys. 45 4303

    [32]

    Rothman S D, Davis J P, Maw J, Robinson C M, Parker K, Palmer J 2005 J. Phys. D:Appl. Phys. 38 733

    [33]

    Hayes D 2001 Bakward Intergration of the Equations of Motion to Correct for Free Surface Perturbations (Sandia National Laboratories Report) SAND2001-1440

    [34]

    Rothman S D, Maw J 2006 J. Phys. IV France 134 745

    [35]

    Reisman D B, Wolfer W G, Elsholz A, Furnish M D 2003 J. Appl. Phys. 93 8952

    [36]

    Davis J P 2006 J. Appl. Phys. 99 103512

    [37]

    Kerley G I 1987 Int. J. Impact Eng. 5 441

    [38]

    Smith R F, Eggert J H, Jankowski A, Celliers P M, Edwards M J, Gupta Y M, Asay J R, Collins G W 2007 Phys. Rev. Lett. 98 065701

  • [1] Zhang Xu, Ding Jin-Min, Hou Chen-Yang, Zhao Yi-Ming, Liu Hong-Wei, Liang Sheng. Machine learning based laser homogenization method. Acta Physica Sinica, 2024, 73(16): 164205. doi: 10.7498/aps.73.20240747
    [2] Yang Wei-Ming, Duan Xiao-Xi, Zhang Chen, Li Yu-Long, Liu Hao, Guan Zan-Yang, Zhang Huan, Sun Liang, Dong Yun-Song, Yang Dong, Wang Zhe-Bin, Yang Jia-Min. Optimization and application of shock wave measurement technology for shock-timing experiments on small-scale capsules. Acta Physica Sinica, 2024, 73(12): 125203. doi: 10.7498/aps.73.20232000
    [3] Tian Bao-Xian, Wang Zhao, Hu Feng-Ming, Gao Zhi-Xing, Ban Xiao-Na, Li Jing. Equation-of-state measurements for polystyrene under high presure driven by HEAVEN-I laser facility. Acta Physica Sinica, 2021, 70(19): 196401. doi: 10.7498/aps.70.20210240
    [4] Zhang Yun-Gang, Liu Huang-Tao, Gao Qiang, Zhu Zhi-Feng, Li Bo, Wang Yong-Da. Time-resolved spectral characteristics of SF6 plasma under femtosecond laser-guided high-voltage discharge. Acta Physica Sinica, 2020, 69(18): 185201. doi: 10.7498/aps.69.20200636
    [5] Guo Jing, Wu Qi, Sun Li-Ling. Pressure-induced phenomena and physics in iron-based superconductors. Acta Physica Sinica, 2018, 67(20): 207409. doi: 10.7498/aps.67.20181651
    [6] Zhang Yang, Xue Chuang, Ding Ning, Liu Hai-Feng, Song Hai-Feng, Zhang Zhao-Hui, Wang Gui-Lin, Sun Shun-Kai, Ning Cheng, Dai Zi-Huan, Shu Xiao-Jian. One-dimensional magneto-hydrodynamic simulation of the magnetic drive isentropic compression experiments on primary test stand. Acta Physica Sinica, 2018, 67(3): 030702. doi: 10.7498/aps.67.20171920
    [7] Chen Da-Wei, Wang Pei, Yu Xi-Jun, Sun Hai-Quan, Ma Dong-Jun. On modeling and physical laws of isentropic speed of sound in dense gas-particle two-phase compressible flows. Acta Physica Sinica, 2016, 65(9): 094702. doi: 10.7498/aps.65.094702
    [8] Wang Feng, Peng Xiao-Shi, Xue Quan-Xi, Xu Tao, Wei Hui-Yue. Quasi-isentropic experiment based on Shen Guang-III prototype laser facility with laser direct drive illumination. Acta Physica Sinica, 2015, 64(8): 085202. doi: 10.7498/aps.64.085202
    [9] Zhao Ji-Bo, Sun Cheng-Wei, Gu Zhuo-Wei, Zhao Jian-Heng, Luo Hao. Magneto-hydrodynamic calculation of magnetic flux compression with explosion driven solid liners and analysis of quasi-isentropic process. Acta Physica Sinica, 2015, 64(8): 080701. doi: 10.7498/aps.64.080701
    [10] Zhang Zhi-Yu, Zhao Yang, Xue Quan-Xi, Wang Feng, Yang Jia-Min. Optical transparency of transparent window LiF in laser-driven quasi-isentropic compression experiment. Acta Physica Sinica, 2015, 64(20): 205202. doi: 10.7498/aps.64.205202
    [11] Yao Yun-Hua, Lu Chen-Hui, Xu Shu-Wu, Ding Jing-Xin, Jia Tian-Qing, Zhang Shi-An, Sun Zhen-Rong. Femtosecond pulse shaping technology and its applications. Acta Physica Sinica, 2014, 63(18): 184201. doi: 10.7498/aps.63.184201
    [12] Wang Feng, Peng Xiao-Shi, Shan Lian-Qiang, Li Mu, Xue Quan-Xi, Xu Tao, Wei Hui-Yue. Experimental progress of quasi-isentropic compression under drive condition of Shen Guang-Ⅲ prototype laser facility. Acta Physica Sinica, 2014, 63(18): 185202. doi: 10.7498/aps.63.185202
    [13] Huang Wei-Qi, Huang Zhong-Mei, Miao Xin-Jian, Yin Jun, Zhou Nian-Jie, Liu Shi-Rong, Qin Chao-Jian. Curved surface effect and characteristic emission of silicon nanostructures. Acta Physica Sinica, 2014, 63(3): 034201. doi: 10.7498/aps.63.034201
    [14] Shan Lian-Qiang, Gao Yu-Lin, Xin Jian-Ting, Wang Feng, Peng Xiao-Shi, Xu Tao, Zhou Wei-Min, Zhao Zong-Qing, Cao Lei-Feng, Wu Yu-Chi, Zhu Bin, Liu Hong-Jie, Liu Dong-Xiao, Shui Min, He Ying-Ling, Zhan Xia-Yu, Gu Yu-Qiu. Laser-driven reservoir target for quasi-isentropic compression in aluminum. Acta Physica Sinica, 2012, 61(13): 135204. doi: 10.7498/aps.61.135204
    [15] Huang Hai-Jun, Shen Qiang, Luo Guo-Qiang, Zhang Lian-Meng. Theoritical analysis of quasi-isentropic compression via flier-plate with grade wave impadence. Acta Physica Sinica, 2007, 56(3): 1538-1542. doi: 10.7498/aps.56.1538
    [16] Shen Qiang, Zhang Lian-Meng, Wang Chuan-Bin, Hua Jin-Song, Tan Hua, Jing Fu-Qian. Design and optimization of wave impedance distribution for flyer materials. Acta Physica Sinica, 2003, 52(7): 1663-1667. doi: 10.7498/aps.52.1663
    [17] Shen Qiang, Wang Chuan-Bin, Zhang Lian-Meng, Hua Jin-Song, Tan Hua, Jing Fu-Qian. . Acta Physica Sinica, 2002, 51(8): 1759-1763. doi: 10.7498/aps.51.1759
    [18] HU XIANG-MING, PENG JIN-SHENG. PHOTON NOISE SQUEEZING AND ITS PHYSICAL MECHANISM OF A DRIVEN V-TYPE THREE-LEVEL LASER. Acta Physica Sinica, 1998, 47(10): 1632-1640. doi: 10.7498/aps.47.1632
    [19] ZHANG JING-JUAN, JI YANG, YAO DE-CHENG, CHEN JUN-BEN. APLLICATION OF GENETIC ALGORITHM TO LASER BEAM RESHAPING. Acta Physica Sinica, 1996, 45(5): 789-795. doi: 10.7498/aps.45.789
    [20] GAO WEN-BIN. REDUCED HUGONIOT CURVE AND EQUATION OF STATE OF METALS UNDER HIGH-PRESSURES. Acta Physica Sinica, 1979, 28(5): 77-85. doi: 10.7498/aps.28.77
Metrics
  • Abstract views:  6483
  • PDF Downloads:  209
  • Cited By: 0
Publishing process
  • Received Date:  29 September 2017
  • Accepted Date:  07 December 2017
  • Published Online:  20 February 2019

/

返回文章
返回
Baidu
map