-
Some bonds on the curved surface (CS) of silicon nanostructures can produce localized electron states in the band gap. Calculated results show that different curvature can form the characteristic electron states for some special bonding on nanosilicon surface, which are related to a series peaks in photoluminescience (PL), such as LN, LO1 and LO2 lines in PL spectra due to SiN, Si=O and SiOSi bonds on the curved surface, respectively. In the same way, SiYb bond on the curved surface of Si nanostructures can manipulate the emission wavelength into the window of optical communication by the CS effect, which is marked as LYb line near 1550 nm in the electroluminescience (EL).
-
Keywords:
- nanostructures /
- curved surface effect /
- localized states /
- characteristic emission
[1] Vahala K J 2003 Nature 424 839
[2] Hirschman K D, Tsybeskov L, Duttagupta S P, Fauchet P M 1996 Nature (London) 384 338
[3] Fauchet P M, Ruan J, chen H, Pavesi L, Negro L Dal, Cazzaneli M, Elliman R G, Smith N, Smoc M, Luther-Davies B 2005 Optical Materials 27 745
[4] Chen S, Qian B, Chen K J, Zhang X G, Xu J, Ma Z Y, Li W, Huang X F 2007 Appl. Phys. Lett. 90 174101
[5] Yang Y, Wang C, Yang R D, Li L, Xiong F, Bao J M 2009 Chin. Phys. B 18 4906
[6] Wolkin M V, Jorne J, Fauchet P M 1999 Phys. Rev. Lett. 82 197
[7] Huang W Q, Huang Z M, Miao X J 2012 Chin. Phys. B 21 094207
[8] Chen H, Shin J H, Fauchet P M, Sung J Y, Shin Jae H, Sung G Y 2007 Appl. Phys. Lett. 91 173121
[9] Huang W Q, Huang Z M, Cheng H Q, Miao X J, Shu Q, Liu S R, Qin C J, 2012 Appl. Phys. Lett. 101 171601
[10] Cazzanelli M, Kovalev D, Negro L Dal, Gaburro Z, Pavesi L 2004 Phys. Rev. Lett. 93 207402
[11] Ruan J, Fauchet P M, Negro L Dal, Cazzanelli M, Pavesi L 2003 Appl. Phys. Lett. 83 5479
[12] Negro L Dal, Cazzanelli M, Pavesi L, Ossicini S, Pacifici D, Franzò G, Priolo F, Iacona F 2003 Appl. Phys. Lett. 82 4636
[13] Huang W Q, Xu L, Wu K Y 2007 J. Appl. Phys. 102 053517
[14] Huang Z M, Huang W Q, Miao X J, Qin C J 2013 Optics Communications 309 127
[15] Canham L T 1900 Appl. Phys. Lett. 57 1046
[16] Pavesi L, Negro L Dal, Mazzoleni C, Franzo G, Priolo F 2000 Nature (London) 408 440
[17] Huang W Q, Jin F, Wang H X, Xu L, Wu K Y, Liu S R, Qin C J 2008 Appl. Phys. Lett. 92 221910
-
[1] Vahala K J 2003 Nature 424 839
[2] Hirschman K D, Tsybeskov L, Duttagupta S P, Fauchet P M 1996 Nature (London) 384 338
[3] Fauchet P M, Ruan J, chen H, Pavesi L, Negro L Dal, Cazzaneli M, Elliman R G, Smith N, Smoc M, Luther-Davies B 2005 Optical Materials 27 745
[4] Chen S, Qian B, Chen K J, Zhang X G, Xu J, Ma Z Y, Li W, Huang X F 2007 Appl. Phys. Lett. 90 174101
[5] Yang Y, Wang C, Yang R D, Li L, Xiong F, Bao J M 2009 Chin. Phys. B 18 4906
[6] Wolkin M V, Jorne J, Fauchet P M 1999 Phys. Rev. Lett. 82 197
[7] Huang W Q, Huang Z M, Miao X J 2012 Chin. Phys. B 21 094207
[8] Chen H, Shin J H, Fauchet P M, Sung J Y, Shin Jae H, Sung G Y 2007 Appl. Phys. Lett. 91 173121
[9] Huang W Q, Huang Z M, Cheng H Q, Miao X J, Shu Q, Liu S R, Qin C J, 2012 Appl. Phys. Lett. 101 171601
[10] Cazzanelli M, Kovalev D, Negro L Dal, Gaburro Z, Pavesi L 2004 Phys. Rev. Lett. 93 207402
[11] Ruan J, Fauchet P M, Negro L Dal, Cazzanelli M, Pavesi L 2003 Appl. Phys. Lett. 83 5479
[12] Negro L Dal, Cazzanelli M, Pavesi L, Ossicini S, Pacifici D, Franzò G, Priolo F, Iacona F 2003 Appl. Phys. Lett. 82 4636
[13] Huang W Q, Xu L, Wu K Y 2007 J. Appl. Phys. 102 053517
[14] Huang Z M, Huang W Q, Miao X J, Qin C J 2013 Optics Communications 309 127
[15] Canham L T 1900 Appl. Phys. Lett. 57 1046
[16] Pavesi L, Negro L Dal, Mazzoleni C, Franzo G, Priolo F 2000 Nature (London) 408 440
[17] Huang W Q, Jin F, Wang H X, Xu L, Wu K Y, Liu S R, Qin C J 2008 Appl. Phys. Lett. 92 221910
Catalog
Metrics
- Abstract views: 5821
- PDF Downloads: 1382
- Cited By: 0