Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Optical transparency of transparent window LiF in laser-driven quasi-isentropic compression experiment

Zhang Zhi-Yu Zhao Yang Xue Quan-Xi Wang Feng Yang Jia-Min

Citation:

Optical transparency of transparent window LiF in laser-driven quasi-isentropic compression experiment

Zhang Zhi-Yu, Zhao Yang, Xue Quan-Xi, Wang Feng, Yang Jia-Min
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • LiF is often used as a window in laser-driven shock experiments, which can transmit and reflect visible probe laser. Researches of LiF transparency almost focus on its optical reflectivity compressed by strong shock, but there is almost no research on its optical transmissivity compressed by weak shock. In order to study the optical transmissivity of LiF, the quasi-isentropic compression experiment is carried out on the ShenGuang-III prototype laser facility, in which the velocity interferometer system for any reflector is used to diagnose the optical reflectivity of the quasi-isentropic compression sample CH/Al/LiF. The experimental results indicate that the velocity interferometer fringes are missing in the late stage of this experiment. The probe laser should penetrate LiF before it hits the rear surface of aluminum and the laser reflected by aluminum should penetrate LiF before it is collected by the velocity interferometer system for any reflector. Therefore, the reflectivity diagnosed by the velocity interferometer system for any reflector is the product of the optical reflectivity of aluminum and the optical transmissivity of LiF under the experimental condition. However, there is no research about the optical transmissivity model of thick LiF compressed by laser-driven shock. In this paper, we develop a transmissivity model for transparent window LiF and simulate the optical reflectivity of sample CH/Al/LiF. Firstly, we simulate the temperature and density of the sample by the code for one-dimensional multigroup radiation hydrodynamics (MULTI-1D). Then, based on the resulting temperature and density, we simulate the optical reflectivity of the sample by using the optical reflectivity model of aluminum and the optical transmissivity model of LiF. Without considering the transparency of LiF, the simulated result indicates that there is no signal missing in the late stage, which is different from the experimental result. By considering the transparency of LiF, the simulated result is in good agreement with the experimental result. The simulated result indicates that the formation of the strong shock, because of the later shock's catching up with the early one, obviously reduces the optical transparency of LiF and finally causes the velocity interferometer fringes to disappear. The simulated result also indicates that the energy gap of LiF calculated from density-functional theory is 1-2 eV. In this experiment, when LiF becomes opaque, its temperature is 1 eV and its pressure is 2-3 Mbar.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11304292) and the Presidential Foundation of China Academy of Engineering Physics, China (Grant No. 201402013).
    [1]

    Loubeyre P, Brygoo S, Eggert J, Celliers P M, Spaulding D K, Rygg J R, Boehly T R, Collins G W, Jeanloz R 2012 Phys. Rev. B 86 144115

    [2]

    Renaudin P, Blancard C, Clérouin J, Faussurier G, Noiret P, Recoules V 2003 Phys. Rev. Lett. 91 075002

    [3]

    Bridgman P W 1946 Rev. Mod. Phys. 18 1

    [4]

    Jing Q M, Wu Q, Liu L, Bi Y, Zhang Y, Liu S G, Xu J A 2012 Chin. Phys. B 21 106201

    [5]

    Al'Tshuler L V, Bakanova A A, Trunin R F 1962 Sov. Phys. JETP 15 65

    [6]

    Sun B R, Zhan Z J, Liang B, Zhang R J, Wang W K 2012 Chin. Phys. B 21 056101

    [7]

    Nellis W J, Moriarty J A, Mitchell A C, Ross M, Dandrea R G, Ashcroft N W, Holmes N C, Gathers G R 1988 Phys. Rev. Lett. 60 1414

    [8]

    Gu Y, Ni Y L, Wang Y G, Mao C S, Wu F C, Wu J, Zhu J, Wan B G 1988 Acta Phys. Sin. 37 1690 (in Chinese) [顾援, 倪元龙, 王勇刚, 毛楚生, 吴逢春, 吴江, 朱俭, 万炳根 1988 37 1690]

    [9]

    Wang F, Peng X S, Shan L Q, Li M, Xue Q X, Xu T, Wei H Y 2014 Acta Phys. Sin. 63 185202 (in Chinese) [王峰, 彭晓世, 单连强, 李牧, 薛全喜, 徐涛, 魏惠月 2014 63 185202]

    [10]

    Yaakobi B, Boehly T R, Meyerhofer D D, Collins T J B, Remington B A, Allen P G, Pollaine S M, Lorenzana H E, Eggert J H 2005 Phys. Plasmas 12 092703

    [11]

    Mančić A 2010 J. Phys.: Conf. Ser. 257 012009

    [12]

    Ping Y, Coppari F, Hicks D G, Yaakobi B, Fratanduono D E, Hamel S, Eggert J H, Rygg J R, Smith R F, Swift D C, Braun D G, Boehly T R, Collins G W 2013 Phys. Rev. Lett. 111 065501

    [13]

    Barrios M A, Hicks D G, Boehly T R, Fratanduono D E, Eggert J H, Celliers P M, Collins G W, Meyerhofer D D 2010 Phys. Plasmas 17 056307

    [14]

    Basko M, Löwer T, Kondrashov V N, Kendl A R S, Meyer-ter-Vehn J 1997 Phys. Rev. E 56 1019

    [15]

    Huser G, Koenig M, Benuzzi-Mounaix A, Henry E, Vinci T, Faral B, Tomasini M, Telaro B, Batani D 2005 Phys. Plasmas 12 060701

    [16]

    Zhou X M, Wang X S, Li S N, Li J, Li J B, Jing F Q 2007 Acta Phys. Sin. 56 4965 (in Chinese) [周显明, 汪小松, 李赛男, 李俊, 李加波, 经福谦 2007 56 4965]

    [17]

    Knudson M D, Hanson D L, Bailey J E, Hall C A, Asay J R 2003 Phys. Rev. Lett. 90 035505

    [18]

    Hicks D G, Celliers P M, Collins G W, Eggert J H, Moon S J 2003 Phys. Rev. Lett. 91 035502

    [19]

    Fratanduono D E, Boehly T R, Barrios M A, Meyerhofer D D, Eggert J H, Smith R F, Hicks D G, Celliers P M, Braun D G, Collins G W 2011 J. Appl. Phys. 109 123521

    [20]

    Clérouin J, Laudernet Y, Recoules V, Mazevet S 2005 Phys. Rev. B 72 155122

    [21]

    Sajid A, Murtaza G, Reshak A H 2013 Mod. Phys. Lett. B 27 1350061

    [22]

    Xue Q, Wang Z, Jiang S, Wang F, Ye X, Liu J 2014 Phys. Plasmas 21 072709

    [23]

    Wang F, Peng X S, Zhang R, Xu T, Wei H Y, Liu S Y, Wang J J, Li M Z, Jiang X H, Ding Y K 2013 High Power Laser and Particle Beams 25 3158 (in Chinese) [王峰, 彭晓世, 张锐, 徐涛, 魏惠月, 刘慎业, 王建军, 李明中, 蒋小华, 丁永坤 2013 强激光与粒子束 25 3158]

    [24]

    Benuzzi A, Koenig M, Faral B, Krishnan J, Pisani F, Batani D, Bossi S, Beretta D, Hall T, Ellwi S, Huller S, Honrubia J, Grandjouan N 1998 Phys. Plasmas 5 2410

    [25]

    Holm B, Ahuja R, Yourdshahyan Y, Johansson B, Lundqvist B I 1999 Phys. Rev. B 59 12777

    [26]

    Wise J L, Chhabildas L C 1986 Shock Wave in Condensed Matter (edited by GuPta Y M) (New York: Plenum) p441

    [27]

    Furnish M D, Chhabildas L C, Reinhart W D 1999 Int. J. Impact Eng. 23 261

    [28]

    LaLone B M, Fat'yanov O V, Asay J R, Gupta Y M 2008 J. Appl. Phys. 103 093505

  • [1]

    Loubeyre P, Brygoo S, Eggert J, Celliers P M, Spaulding D K, Rygg J R, Boehly T R, Collins G W, Jeanloz R 2012 Phys. Rev. B 86 144115

    [2]

    Renaudin P, Blancard C, Clérouin J, Faussurier G, Noiret P, Recoules V 2003 Phys. Rev. Lett. 91 075002

    [3]

    Bridgman P W 1946 Rev. Mod. Phys. 18 1

    [4]

    Jing Q M, Wu Q, Liu L, Bi Y, Zhang Y, Liu S G, Xu J A 2012 Chin. Phys. B 21 106201

    [5]

    Al'Tshuler L V, Bakanova A A, Trunin R F 1962 Sov. Phys. JETP 15 65

    [6]

    Sun B R, Zhan Z J, Liang B, Zhang R J, Wang W K 2012 Chin. Phys. B 21 056101

    [7]

    Nellis W J, Moriarty J A, Mitchell A C, Ross M, Dandrea R G, Ashcroft N W, Holmes N C, Gathers G R 1988 Phys. Rev. Lett. 60 1414

    [8]

    Gu Y, Ni Y L, Wang Y G, Mao C S, Wu F C, Wu J, Zhu J, Wan B G 1988 Acta Phys. Sin. 37 1690 (in Chinese) [顾援, 倪元龙, 王勇刚, 毛楚生, 吴逢春, 吴江, 朱俭, 万炳根 1988 37 1690]

    [9]

    Wang F, Peng X S, Shan L Q, Li M, Xue Q X, Xu T, Wei H Y 2014 Acta Phys. Sin. 63 185202 (in Chinese) [王峰, 彭晓世, 单连强, 李牧, 薛全喜, 徐涛, 魏惠月 2014 63 185202]

    [10]

    Yaakobi B, Boehly T R, Meyerhofer D D, Collins T J B, Remington B A, Allen P G, Pollaine S M, Lorenzana H E, Eggert J H 2005 Phys. Plasmas 12 092703

    [11]

    Mančić A 2010 J. Phys.: Conf. Ser. 257 012009

    [12]

    Ping Y, Coppari F, Hicks D G, Yaakobi B, Fratanduono D E, Hamel S, Eggert J H, Rygg J R, Smith R F, Swift D C, Braun D G, Boehly T R, Collins G W 2013 Phys. Rev. Lett. 111 065501

    [13]

    Barrios M A, Hicks D G, Boehly T R, Fratanduono D E, Eggert J H, Celliers P M, Collins G W, Meyerhofer D D 2010 Phys. Plasmas 17 056307

    [14]

    Basko M, Löwer T, Kondrashov V N, Kendl A R S, Meyer-ter-Vehn J 1997 Phys. Rev. E 56 1019

    [15]

    Huser G, Koenig M, Benuzzi-Mounaix A, Henry E, Vinci T, Faral B, Tomasini M, Telaro B, Batani D 2005 Phys. Plasmas 12 060701

    [16]

    Zhou X M, Wang X S, Li S N, Li J, Li J B, Jing F Q 2007 Acta Phys. Sin. 56 4965 (in Chinese) [周显明, 汪小松, 李赛男, 李俊, 李加波, 经福谦 2007 56 4965]

    [17]

    Knudson M D, Hanson D L, Bailey J E, Hall C A, Asay J R 2003 Phys. Rev. Lett. 90 035505

    [18]

    Hicks D G, Celliers P M, Collins G W, Eggert J H, Moon S J 2003 Phys. Rev. Lett. 91 035502

    [19]

    Fratanduono D E, Boehly T R, Barrios M A, Meyerhofer D D, Eggert J H, Smith R F, Hicks D G, Celliers P M, Braun D G, Collins G W 2011 J. Appl. Phys. 109 123521

    [20]

    Clérouin J, Laudernet Y, Recoules V, Mazevet S 2005 Phys. Rev. B 72 155122

    [21]

    Sajid A, Murtaza G, Reshak A H 2013 Mod. Phys. Lett. B 27 1350061

    [22]

    Xue Q, Wang Z, Jiang S, Wang F, Ye X, Liu J 2014 Phys. Plasmas 21 072709

    [23]

    Wang F, Peng X S, Zhang R, Xu T, Wei H Y, Liu S Y, Wang J J, Li M Z, Jiang X H, Ding Y K 2013 High Power Laser and Particle Beams 25 3158 (in Chinese) [王峰, 彭晓世, 张锐, 徐涛, 魏惠月, 刘慎业, 王建军, 李明中, 蒋小华, 丁永坤 2013 强激光与粒子束 25 3158]

    [24]

    Benuzzi A, Koenig M, Faral B, Krishnan J, Pisani F, Batani D, Bossi S, Beretta D, Hall T, Ellwi S, Huller S, Honrubia J, Grandjouan N 1998 Phys. Plasmas 5 2410

    [25]

    Holm B, Ahuja R, Yourdshahyan Y, Johansson B, Lundqvist B I 1999 Phys. Rev. B 59 12777

    [26]

    Wise J L, Chhabildas L C 1986 Shock Wave in Condensed Matter (edited by GuPta Y M) (New York: Plenum) p441

    [27]

    Furnish M D, Chhabildas L C, Reinhart W D 1999 Int. J. Impact Eng. 23 261

    [28]

    LaLone B M, Fat'yanov O V, Asay J R, Gupta Y M 2008 J. Appl. Phys. 103 093505

  • [1] Tian Bao-Xian, Wang Zhao, Hu Feng-Ming, Gao Zhi-Xing, Ban Xiao-Na, Li Jing. Equation-of-state measurements for polystyrene under high presure driven by HEAVEN-I laser facility. Acta Physica Sinica, 2021, 70(19): 196401. doi: 10.7498/aps.70.20210240
    [2] Zhang Yang, Xue Chuang, Ding Ning, Liu Hai-Feng, Song Hai-Feng, Zhang Zhao-Hui, Wang Gui-Lin, Sun Shun-Kai, Ning Cheng, Dai Zi-Huan, Shu Xiao-Jian. One-dimensional magneto-hydrodynamic simulation of the magnetic drive isentropic compression experiments on primary test stand. Acta Physica Sinica, 2018, 67(3): 030702. doi: 10.7498/aps.67.20171920
    [3] Xue Quan-Xi, Jiang Shao-En, Wang Zhe-Bin, Wang Feng, Zhao Xue-Qing, Yi Ai-Ping, Ding Yong-Kun, Liu Jing-Ru. Progress of laser-driven quasi-isentropic compression study performed on SHENGUANG III prototype laser facility. Acta Physica Sinica, 2018, 67(4): 045202. doi: 10.7498/aps.67.20172159
    [4] Wang Feng, Peng Xiao-Shi, Xue Quan-Xi, Xu Tao, Wei Hui-Yue. Quasi-isentropic experiment based on Shen Guang-III prototype laser facility with laser direct drive illumination. Acta Physica Sinica, 2015, 64(8): 085202. doi: 10.7498/aps.64.085202
    [5] Zhao Ji-Bo, Sun Cheng-Wei, Gu Zhuo-Wei, Zhao Jian-Heng, Luo Hao. Magneto-hydrodynamic calculation of magnetic flux compression with explosion driven solid liners and analysis of quasi-isentropic process. Acta Physica Sinica, 2015, 64(8): 080701. doi: 10.7498/aps.64.080701
    [6] Wu Cheng-Guo, Wu Wen-Yuan, Gong Yan-Chun, Dai Bin-Fei, He Su-Hong, Huang Yan-Hua. First-principles study on the band-gap changes of Zn2GeO4 under high pressure. Acta Physica Sinica, 2015, 64(11): 114213. doi: 10.7498/aps.64.114213
    [7] Wang Feng, Peng Xiao-Shi, Shan Lian-Qiang, Li Mu, Xue Quan-Xi, Xu Tao, Wei Hui-Yue. Experimental progress of quasi-isentropic compression under drive condition of Shen Guang-Ⅲ prototype laser facility. Acta Physica Sinica, 2014, 63(18): 185202. doi: 10.7498/aps.63.185202
    [8] Shan Lian-Qiang, Gao Yu-Lin, Xin Jian-Ting, Wang Feng, Peng Xiao-Shi, Xu Tao, Zhou Wei-Min, Zhao Zong-Qing, Cao Lei-Feng, Wu Yu-Chi, Zhu Bin, Liu Hong-Jie, Liu Dong-Xiao, Shui Min, He Ying-Ling, Zhan Xia-Yu, Gu Yu-Qiu. Laser-driven reservoir target for quasi-isentropic compression in aluminum. Acta Physica Sinica, 2012, 61(13): 135204. doi: 10.7498/aps.61.135204
    [9] Xu Mei, Linghu Rong-Feng, Li Ying-Fa, Yang Xiang-Dong, Wang Xiao-Lu. Study on the physical properties of molecule LiF in external electric field. Acta Physica Sinica, 2012, 61(9): 093102. doi: 10.7498/aps.61.093102
    [10] Li Xue-Mei, Yu Yu-Ying, Zhang Lin, Li Ying-Hua, Ye Su-Hua, Weng Ji-Dong. Elastic-plastic response of shocked 100 LiF and its window correction at 1550 nm wavelength. Acta Physica Sinica, 2012, 61(15): 156202. doi: 10.7498/aps.61.156202
    [11] Deng Yang, Wang Ru-Zhi, Xu Li-Chun, Fang Hui, Yan Hui. Pressure induced band-gap changes in (Ba0.5Sr0.5)TiO3 (BST) from first-principles calculations. Acta Physica Sinica, 2011, 60(11): 117309. doi: 10.7498/aps.60.117309
    [12] He Xu, He Lin, Tang Ming-Jie, Xu Ming. Effects of the vacancy point-defect on electronic structure and optical properties of LiF under high pressure: A first principles investigation. Acta Physica Sinica, 2011, 60(2): 026102. doi: 10.7498/aps.60.026102
    [13] Huang Hai-Jun, Shen Qiang, Luo Guo-Qiang, Zhang Lian-Meng. Theoritical analysis of quasi-isentropic compression via flier-plate with grade wave impadence. Acta Physica Sinica, 2007, 56(3): 1538-1542. doi: 10.7498/aps.56.1538
    [14] First principles investigation of structural stability and electronic and optical properties of LiF and NaF under high pressure. Acta Physica Sinica, 2007, 56(12): 7201-7206. doi: 10.7498/aps.56.7201
    [15] Zhou Xian-Ming, Wang Xiao-Song, Li Sai-Nan, Li Jun, Li Jia-Bo, Jing Fu-Qian. Optical transparency of z-cut LiF, Al2O3 and LiTaO3 single crystals under strong shock compression. Acta Physica Sinica, 2007, 56(8): 4965-4970. doi: 10.7498/aps.56.4965
    [16] Chen De-Yan, Lü Tie-Yu, Huang Mei-Chun. GW quasiparticle band structure of BaSe. Acta Physica Sinica, 2006, 55(7): 3597-3600. doi: 10.7498/aps.55.3597
    [17] Shen Qiang, Zhang Lian-Meng, Wang Chuan-Bin, Hua Jin-Song, Tan Hua, Jing Fu-Qian. Design and optimization of wave impedance distribution for flyer materials. Acta Physica Sinica, 2003, 52(7): 1663-1667. doi: 10.7498/aps.52.1663
    [18] Shen Qiang, Wang Chuan-Bin, Zhang Lian-Meng, Hua Jin-Song, Tan Hua, Jing Fu-Qian. . Acta Physica Sinica, 2002, 51(8): 1759-1763. doi: 10.7498/aps.51.1759
    [19] LIN XING, ZHANG WENG-ZHENG, WU FENG-TIE, ZHENG YUN-SHAN, CHEN QI-XIONG, SUN ZHAN-AO. CHARACTERISTIC INVESTIGATION OF A ULTRASHORT LIGHT PULSE PASSAGE THROUGH THE COLOURED LiF CRYSTALS. Acta Physica Sinica, 1987, 36(1): 89-94. doi: 10.7498/aps.36.89
    [20] Zheng Li-xing, Ruan Yong-feng, Guo Shao-zhang, Wan Liang-feng, Li Hao. EXPERIMENTAL STUDIES OF F3+ COLOR CENTERS IN LiF CRYSTAL. Acta Physica Sinica, 1986, 35(9): 1148-1157. doi: 10.7498/aps.35.1148
Metrics
  • Abstract views:  6213
  • PDF Downloads:  154
  • Cited By: 0
Publishing process
  • Received Date:  04 January 2015
  • Accepted Date:  03 June 2015
  • Published Online:  05 October 2015

/

返回文章
返回
Baidu
map