Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Experimental progress of quasi-isentropic compression under drive condition of Shen Guang-Ⅲ prototype laser facility

Wang Feng Peng Xiao-Shi Shan Lian-Qiang Li Mu Xue Quan-Xi Xu Tao Wei Hui-Yue

Citation:

Experimental progress of quasi-isentropic compression under drive condition of Shen Guang-Ⅲ prototype laser facility

Wang Feng, Peng Xiao-Shi, Shan Lian-Qiang, Li Mu, Xue Quan-Xi, Xu Tao, Wei Hui-Yue
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Laser indirect-drive has the potential to obtain ultra-high pressure which is very useful for shock physics. The isentropic compression can be obtained with reservoir target in laser indirect-drive experiment. The free surface velocity and interface velocity are the two important parameters in isentropic compression experiment. The efficiency with reservoir target is lower than that in the isentropic compression experiment with long pulse laser direct-drive. However, the isentropic compression experiment with long pulse in laser direct-drive is very sensitive to the laser intensity variation. In this paper, the isentropic compressions with reservoir target with indirect-drive and direct-drive on Shen Guang-Ⅲ prototype laser facility are investigated separately. And the important technique is introduced to provide the reference data in this field. And the isentropic compression with long pulse laser direct-drive is analyzed on Shen Guang-Ⅲ prototype laser facility. The interface velocity on Al/LiF is achieved with three steps. The blank effect is provided and analyzed. These data show that with long pulse in laser direct-drive, a pressure, which has been highest in China up to now, can be obtained. With these experiment data, the feasibility to do the isentropic compression experiment on Shen Guang-Ⅲ prototype laser facility has been approved.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 10805041), Science and Technology on Plasma Physics Laboratory, China (Grant No. 9140C6801021001) and the National High Technology Research and the Science Foundation of China Academy of Engineering Physics (Grant No. 2011B0102020).
    [1]

    Munro D H, Celliers P M, Collins G W, Gold D M, Da Silva L B, Haan S W, Cauble R C, Hammel B A, Hsing W W 2006 Phys. Plasmas 8 2245

    [2]

    Boehly T R, Vianello E, Miller J E, Craxton R S, Collins T J B, Goncharov V N, Igumenshchev I V, Meyerhoferc D D, Hicks D G, Celliers P M, Collins G W 2006 Phys.Plasmas 13 056303

    [3]

    Lorenz K T, Edwards M J, Jankowski A F, Pollaine S M, Smith R F, Remington B A 2006 High Energ. Dens. Phys. 2 113

    [4]

    Jia G, Xiong J, Dong J Q, Xie Z Y, Wu J 2012 Chin. Phys. B 21 095202

    [5]

    Smith R F, Pollaine S M, Moon S J, Lorenz K T, Celliers P M, Eggert J H, Park H S, Collins G W 2007 Phys. Plasmas 14 057105

    [6]

    Jin K, Li P, Wu Q 2004 Explosion and Shock Waves 24 419 (in Chinese)[金柯, 李平, 吴强 2004 爆炸与冲击 24 419]

    [7]

    Sun C W 2005 Detonation and Shock Waves 2 84 (in Chinese)[孙承纬 2005 爆轰波与冲击波 2 84]

    [8]

    Smith R F, Eggert J H, Jankowski A, Celliers P M, Edwards M J, Gupta Y M, Asay J R, Collins G W 2007 Phys. Rev. Lett. 98 065701

    [9]

    Bradley D K, Eggert J H, Smith R F, Prisbrey S T, Hicks D G, Braun D G, Biener J, Hamza A V, Rudd R E, Collins G W 2009 Phys. Rev. Lett. 102 075503

    [10]

    Cauble R, Reisman D B, Asay J R, Hall C A, Knudson M D, Hemsing W F, Goforth J H, Tasker D G 2002 J. Phys.: Condens. Matter 14 10821

    [11]

    Celliers P M, Bradley D K, Collins G W, Hicks D G, Boehly T R, Armstrong W J 2004 Rev. Sci. Instrum. 75 4916

    [12]

    Wang F, Peng X S, Liu S Y, Li Y S, Jiang X H, Ding Y K 2011 Acta Phys. Sin. 60 025202(in Chinese)[王峰, 彭晓世, 刘慎业, 李永升, 蒋小华, 丁永坤 2011 60 025202]

    [13]

    Shan L Q, Gao Y L, Xin J T, Wang F, Peng X S, Xu T, Zhou W M, Zhao Z Q, Cao L F, Wu Y C, Zhu B, Liu H J, Liu D X, Shui M, He Y L, Zhan X Y, Gu Y Q 2012 Acta Phys. Sin. 61 135204(in Chinese)[单连强, 高宇林, 辛建婷, 王峰, 彭晓世, 徐涛, 周维民, 赵宗清, 曹磊峰, 吴玉迟, 朱斌, 刘红杰, 刘东晓, 税敏, 何颖玲, 詹夏雨, 谷渝秋 2012 61 135204]

    [14]

    Wang F, Peng X S, Liu S Y, Jiang X H, Xu T, Ding Y K, Zhang B H 2011 Acta Phys. Sin. 60 115203(in Chinese)[王峰, 彭晓世, 刘慎业, 蒋小华, 徐涛, 丁永坤, 张保汉 2011 60 115203]

    [15]

    Benuzzi A, Koenig M, Faral B, Krishnan J, Pisani F, Batani D, Bossi S, Beretta D, Hall T, Ellwi S, Huller S, Honrubia J, Grandjouan N 1998 Phys. Plasmas 5 2401

    [16]

    Zhang C, Wang Z B, Zhao B, Hu G Y, Wang F, Peng X S, Jiang S E, Ding Y K, Zheng J 2013 Phys. Plasmas 20 122706

  • [1]

    Munro D H, Celliers P M, Collins G W, Gold D M, Da Silva L B, Haan S W, Cauble R C, Hammel B A, Hsing W W 2006 Phys. Plasmas 8 2245

    [2]

    Boehly T R, Vianello E, Miller J E, Craxton R S, Collins T J B, Goncharov V N, Igumenshchev I V, Meyerhoferc D D, Hicks D G, Celliers P M, Collins G W 2006 Phys.Plasmas 13 056303

    [3]

    Lorenz K T, Edwards M J, Jankowski A F, Pollaine S M, Smith R F, Remington B A 2006 High Energ. Dens. Phys. 2 113

    [4]

    Jia G, Xiong J, Dong J Q, Xie Z Y, Wu J 2012 Chin. Phys. B 21 095202

    [5]

    Smith R F, Pollaine S M, Moon S J, Lorenz K T, Celliers P M, Eggert J H, Park H S, Collins G W 2007 Phys. Plasmas 14 057105

    [6]

    Jin K, Li P, Wu Q 2004 Explosion and Shock Waves 24 419 (in Chinese)[金柯, 李平, 吴强 2004 爆炸与冲击 24 419]

    [7]

    Sun C W 2005 Detonation and Shock Waves 2 84 (in Chinese)[孙承纬 2005 爆轰波与冲击波 2 84]

    [8]

    Smith R F, Eggert J H, Jankowski A, Celliers P M, Edwards M J, Gupta Y M, Asay J R, Collins G W 2007 Phys. Rev. Lett. 98 065701

    [9]

    Bradley D K, Eggert J H, Smith R F, Prisbrey S T, Hicks D G, Braun D G, Biener J, Hamza A V, Rudd R E, Collins G W 2009 Phys. Rev. Lett. 102 075503

    [10]

    Cauble R, Reisman D B, Asay J R, Hall C A, Knudson M D, Hemsing W F, Goforth J H, Tasker D G 2002 J. Phys.: Condens. Matter 14 10821

    [11]

    Celliers P M, Bradley D K, Collins G W, Hicks D G, Boehly T R, Armstrong W J 2004 Rev. Sci. Instrum. 75 4916

    [12]

    Wang F, Peng X S, Liu S Y, Li Y S, Jiang X H, Ding Y K 2011 Acta Phys. Sin. 60 025202(in Chinese)[王峰, 彭晓世, 刘慎业, 李永升, 蒋小华, 丁永坤 2011 60 025202]

    [13]

    Shan L Q, Gao Y L, Xin J T, Wang F, Peng X S, Xu T, Zhou W M, Zhao Z Q, Cao L F, Wu Y C, Zhu B, Liu H J, Liu D X, Shui M, He Y L, Zhan X Y, Gu Y Q 2012 Acta Phys. Sin. 61 135204(in Chinese)[单连强, 高宇林, 辛建婷, 王峰, 彭晓世, 徐涛, 周维民, 赵宗清, 曹磊峰, 吴玉迟, 朱斌, 刘红杰, 刘东晓, 税敏, 何颖玲, 詹夏雨, 谷渝秋 2012 61 135204]

    [14]

    Wang F, Peng X S, Liu S Y, Jiang X H, Xu T, Ding Y K, Zhang B H 2011 Acta Phys. Sin. 60 115203(in Chinese)[王峰, 彭晓世, 刘慎业, 蒋小华, 徐涛, 丁永坤, 张保汉 2011 60 115203]

    [15]

    Benuzzi A, Koenig M, Faral B, Krishnan J, Pisani F, Batani D, Bossi S, Beretta D, Hall T, Ellwi S, Huller S, Honrubia J, Grandjouan N 1998 Phys. Plasmas 5 2401

    [16]

    Zhang C, Wang Z B, Zhao B, Hu G Y, Wang F, Peng X S, Jiang S E, Ding Y K, Zheng J 2013 Phys. Plasmas 20 122706

  • [1] Wang Jin-Ling, Zhang Kun, Lin Ji, Li Hui-Jun. Generation and modulation of shock waves in two-dimensional polariton condensates. Acta Physica Sinica, 2024, 73(11): 119601. doi: 10.7498/aps.73.20240229
    [2] Sun Si-Tong, Ding Ying-Xing, Liu Wu-Ming. Research progress in quantum precision measurements based on linear and nonlinear interferometers. Acta Physica Sinica, 2022, 71(13): 130701. doi: 10.7498/aps.71.20220425
    [3] Jia Rui-Yu, Fang Ping-Ping, Gao Chao, Lin Ji. Quenched solitons and shock waves in Bose-Einstein condensates. Acta Physica Sinica, 2021, 70(18): 180303. doi: 10.7498/aps.70.20210564
    [4] Wang Xiao-Feng, Tao Gang, Xu Ning, Wang Peng, Li Zhao, Wen Peng. Molecular dynamics analysis of shock wave-induced nanobubble collapse in water. Acta Physica Sinica, 2021, 70(13): 134702. doi: 10.7498/aps.70.20210058
    [5] Sun Teng-Fei, Lu Peng, Zhuo Zhuang, Zhang Wen-Hao, Lu Jing-Qi. Dual-channel quantitative phase microscopy based on a single cube beamsplitter interferometer. Acta Physica Sinica, 2018, 67(14): 140704. doi: 10.7498/aps.67.20172722
    [6] Wu You-Cheng, Liu Gao-Min, Dai Wen-Feng, Gao Zhi-Peng, He Hong-Liang, Hao Shi-Rong, Deng Jian-Jun. Dynamic resistivity of Pb(Zr0.95Ti0.05)O3 depolarized ferroelectric under shock wave compression. Acta Physica Sinica, 2017, 66(4): 047201. doi: 10.7498/aps.66.047201
    [7] He Yin-Zhu, Zhao Shi-Jie, Wei Hao-Yun, Li Yan. Traceable trans-scale heterodyne interferometer with subnanometer resolution. Acta Physica Sinica, 2017, 66(6): 060601. doi: 10.7498/aps.66.060601
    [8] Wang Feng, Peng Xiao-Shi, Xue Quan-Xi, Xu Tao, Wei Hui-Yue. Quasi-isentropic experiment based on Shen Guang-III prototype laser facility with laser direct drive illumination. Acta Physica Sinica, 2015, 64(8): 085202. doi: 10.7498/aps.64.085202
    [9] Yu Yin, Wang Wen-Qiang, Yang Jia, Zhang You-Jun, Jiang Dong-Dong, He Hong-Liang. Mesoscopic picture of fracture in porous brittle material under shock wave compression. Acta Physica Sinica, 2012, 61(4): 048103. doi: 10.7498/aps.61.048103
    [10] Shu Hua, Fu Si-Zu, Huang Xiu-Guang, Ye Jun-Jian, Zhou Hua-Zhen, Xie Zhi-Yong, Long Tao. Line-imaging optical recording velocity interferometer at Shenguang-II laser facility and its applications. Acta Physica Sinica, 2012, 61(11): 114102. doi: 10.7498/aps.61.114102
    [11] Wang Feng, Peng Xiao-Shi, Mei Lu-Sheng, Liu Shen-Ye, Jiang Xiao-Hua, Ding Yong-Kun. Shock timing experiment based on imaging velocity interferometer system for any reflector. Acta Physica Sinica, 2012, 61(13): 135201. doi: 10.7498/aps.61.135201
    [12] Shan Lian-Qiang, Gao Yu-Lin, Xin Jian-Ting, Wang Feng, Peng Xiao-Shi, Xu Tao, Zhou Wei-Min, Zhao Zong-Qing, Cao Lei-Feng, Wu Yu-Chi, Zhu Bin, Liu Hong-Jie, Liu Dong-Xiao, Shui Min, He Ying-Ling, Zhan Xia-Yu, Gu Yu-Qiu. Laser-driven reservoir target for quasi-isentropic compression in aluminum. Acta Physica Sinica, 2012, 61(13): 135204. doi: 10.7498/aps.61.135204
    [13] Cai Yuan-Xue, Zhang Yun-Dong, Dang Bo-Shi, Wu Hao, Wang Jin-Fang, Yuan Ping. High sensitivity slow light interferometer based on dispersiveproperty of Ⅲ-Ⅴ and Ⅱ-Ⅵ semiconductor materials. Acta Physica Sinica, 2011, 60(4): 040701. doi: 10.7498/aps.60.040701
    [14] Wang Feng, Peng Xiao-Shi, Liu Shen-Ye, Li Yong-Sheng, Jiang Xiao-Hua, Ding Yong-Kun. Direct measurement technique for shock wave velocity under super high pressure. Acta Physica Sinica, 2011, 60(2): 025202. doi: 10.7498/aps.60.025202
    [15] Wang Feng, Peng Xiao-Shi, Liu Shen-Ye, Jiang Xiao-Hua, Xu Tao, Ding Yong-Kun, Zhang Bao-Han. Shock experiment with sandwiched target in laser indirect-drive experiment. Acta Physica Sinica, 2011, 60(11): 115203. doi: 10.7498/aps.60.115203
    [16] Jiang Dong-Dong, Du Jin-Mei, Gu Yan, Feng Yu-Jun. Resistivity of PZT 95/5 ferroelectric ceramic under shock wave compression. Acta Physica Sinica, 2008, 57(1): 566-570. doi: 10.7498/aps.57.566
    [17] Yu Yu-Ying, Tan Hua, Hu Jian-Bo, Dai Cheng-Da, Chen Da-Nian, Wang Huan-Ran. Effective shear modulus in shock-compressed aluminum. Acta Physica Sinica, 2008, 57(4): 2352-2357. doi: 10.7498/aps.57.2352
    [18] Cui Xin-Lin, Zhu Wen-Jun, Deng Xiao-Liang, Li Ying-Jun, He Hong-Liang. Molecular dynamic simulation of shock-induced phase transformation in single crystal iron with nano-void inclusion. Acta Physica Sinica, 2006, 55(10): 5545-5550. doi: 10.7498/aps.55.5545
    [19] Fu Si-Zu, Huang Xiu-Guang, Wu Jiang, Wang Rui-Rong, Ma Min-Xun, He Ju-Hua, Ye Jun-Jian, Gu Yuan. Experimental study of shock wave propagating character in targets driven by an i nclined-incident laser. Acta Physica Sinica, 2003, 52(8): 1877-1881. doi: 10.7498/aps.52.1877
    [20] ZHANG JIE, WANG WEI. NUMERICAL SIMULATION STUDY OF LASER-DRIVEN SHOCKWAVE PROPAGATION IN PLANAR Al FOIL TARGETS. Acta Physica Sinica, 2001, 50(4): 741-747. doi: 10.7498/aps.50.741
Metrics
  • Abstract views:  6002
  • PDF Downloads:  534
  • Cited By: 0
Publishing process
  • Received Date:  18 February 2014
  • Accepted Date:  05 May 2014
  • Published Online:  05 September 2014

/

返回文章
返回
Baidu
map