搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

稠密可压缩气粒两相流动中的等熵声速计算建模及物理规律

陈大伟 王裴 蔚喜军 孙海权 马东军

引用本文:
Citation:

稠密可压缩气粒两相流动中的等熵声速计算建模及物理规律

陈大伟, 王裴, 蔚喜军, 孙海权, 马东军

On modeling and physical laws of isentropic speed of sound in dense gas-particle two-phase compressible flows

Chen Da-Wei, Wang Pei, Yu Xi-Jun, Sun Hai-Quan, Ma Dong-Jun
PDF
导出引用
  • 气体相与颗粒相混合流场的声速研究, 由于具有重要的基础理论价值与广泛的工程应用背景, 逐渐受到人们重视. 针对稠密可压缩气粒两相流动, 综合考虑颗粒相所占空间体积以及颗粒间相互作用, 推导给出了新的等熵声速计算公式; 新公式包含了已有的纯气体、稀疏气粒两相流情形的计算公式作为其特例, 一方面验证了公式推导的正确性, 另一方面说明新公式更具有通用性; 分析了不同颗粒质量分数条件下的声速变化规律, 相应结果与普朗特的理论分析符合, 特别对于稠密气粒两相流动工况得到了一些新的物理认识; 开展了颗粒间相互作用建模参数的物理分析, 揭示了其对气粒两相流动声速的影响机理. 本文取得的成果为稠密可压缩气粒两相流动研究以及相关工程应用提供理论支撑.
    Study of isentropic sound speed of two-phase or multiphase flow has theoretical significance and wide application background. As is well known, the speed of sound in fluid containing particles in suspension differs from that in the pure fluid. In the particular case of bubbly liquids (gas liquid two-phase flow), the researches find that the differences can be drastic. Up to now, the isentropic speed of sound in the flow field with a small volume fraction of bubbles (less than 1%), has been investigated fully both experimentally and theoretically. In this paper, we consider another situation, as the case with solid particles in gas, which is the so-called gas particle two-phase flow. Although many results have been obtained in gas liquid two-phase flow, there is still a lot of basic work to do due to the large differences in the flow structure and flow pattern between gas particle two-phase flow and gas liquid two-phase flow. Treating the gas particle suspension as the relaxed equilibrium, thermodynamic arguments are used to obtain the isentropic speed of sound. Unlike the existing work, we are dedicated to developing the computational model under dense condition. The space volume occupied by particle phase and the interaction between particles are overall considered, then a new formula of isentropic sound speed is derived. The new formula includes formulae of the pure gas flow and the already existing dilute gas particle two-phase flow as a special case. On the one hand, the correctness of our formula is verified. On the other hand, the new formula is more general. The variations of sound speed with different mass fractions of particle phase are analyzed. The theoretical calculation results show that the overall physical law of sound speed change is that with the increase of the particle mass fraction, the sound speed first decreases and then increases. The velocity of sound propagation in gas particle two-phase flow is far smaller than in pure gas in a wide range, so it is easy to reach the supersonic condition. When the particle volume fraction is below 10%, the result is consistent with Prandtl theoretical analysis. In this range, the influences of the particle phase pressure modeling parameters can be neglected. When the particle volume fraction is more than 10%, the particle phase pressure modeling parameters produce influences. Furthermore the corresponding physical principles and the mechanisms are discussed and revealed. The new formula and physical understandings obtained in this paper will provide a theoretical support for the researches of dense gas particle two-phase compressible flow and related engineering applications.
      通信作者: 蔚喜军, yuxj@iapcm.ac.cn
    • 基金项目: 国家自然科学基金(批准号: U1530261, 11571002)和中国工程物理研究院科学技术发展基金(批准号: 2015B0101021, 2015B0201043)资助的课题.
      Corresponding author: Yu Xi-Jun, yuxj@iapcm.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. U1530261, 11571002) and the Science Foundation of China Academy of Engineering Physics (Grant Nos. 2015B0101021, 2015B0201043).
    [1]

    Liu D Y 1990 Chin. J. Theoret. Appl. Mech. 22 660 (in Chinese) [刘大有 1990 力学学报 22 660]

    [2]

    Hu M B, Dang S C, Ma Q, Xia W D 2015 Chin. Phys. B 24 074502

    [3]

    Nichita D V, Khalid P, Broseta D 2010 Fluid Phase Equilibr. 291 95

    [4]

    Liu X Z, Wang Y X, Zhu S G, Li G H 2007 J. Engineer. Thermophys. 28 201 (in Chinese) [刘心志, 王益祥, 朱曙光, 李光辉 2007 工程热 28 201]

    [5]

    Holloway W, Sundaresan S 2014 Chem. Eng. Sci. 108 67

    [6]

    Valverde J M 2013 Soft Matter 9 8792

    [7]

    Liu B, Fang D Y, Xia Z X, Wang L 2013 J. Propuls. Technol. 34 8 (in Chinese) [刘冰, 方丁酉, 夏智勋, 王林 2013 推进技术 34 8]

    [8]

    Saito T 2002 J. Comput. Phys. 176 129

    [9]

    Liu L, Wang Y S, Zhou F D 1999 Chin. J. Appl. Mechan. 16 22 (in Chinese) [刘磊, 王跃社, 周芳德 1999 应用力学学报 16 22]

    [10]

    Wang P, Sun H Q, Shao J L, Qin C S, Li X Z 2012 Acta Phys. Sin. 61 234703 (in Chinese) [王裴, 孙海权, 邵建立, 秦承森, 李欣竹 2012 物理学 报 61 234703]

    [11]

    Nguyen D L, Winter E R F, Greirer M 1981 Int. J. Multiphas. Flow 7 311

    [12]

    Zhao J F, Li W 1999 J. Basic Sci. Engineer. 7 321 (in Chinese) [赵建福, 李炜 1999 应用基础与工程科学学报 7 321]

    [13]

    Zeng D L, Zhao L J, Xiao Y 2001 Proceedings of The International Conference on Energy Conversion and Application Wuhan, China 200 65

    [14]

    Huang F, Bai B F, Guo L J 2004 Prog. Nat. Sci. 14 344

    [15]

    Chaudhuri A, Osterhoudt C F, Sinha D N 2012 ASME J. Fluid. Eng. 134 101301

    [16]

    Zhao L J, Li B, Gao H, Li D S, Yuan Y X, Zeng D L 2007 J. Engineer. Thermophys. 28 388 (in Chinese) [赵良举, 李斌, 高虹, 李德胜, 袁悦祥, 曾丹苓 2007 工程热 28 388]

    [17]

    Temkin S 1992 Phys. Fluid A 4 2399

    [18]

    Fang D Y 1988 Two-phase Fluid Dynamics (Changsha: National University of Defense Technology Press) p14-22 (in Chinese) [方丁酉 1988 两相流 动力学(长沙: 国防科技大学出版社) 第 14-22 页]

    [19]

    Li W X 2003 One-Dimensional Nonsteady Flow and Shock Waves (Beijing: National Defence of Industry Press) pp40-49, 206 (in Chinese) [李维新 2003 一维不定常流与冲击波(北京: 国防工业出版社) 第 40-49, 206页]

    [20]

    Snider D M 2001 J. Comput. Phys. 170 523

    [21]

    Harris S E, Crighton D G 1994 J. Fluid Mech. 266 243

    [22]

    Auzerais F M, Jackson R, Russel W B 1988 J. Fluid Mech. 195 437

  • [1]

    Liu D Y 1990 Chin. J. Theoret. Appl. Mech. 22 660 (in Chinese) [刘大有 1990 力学学报 22 660]

    [2]

    Hu M B, Dang S C, Ma Q, Xia W D 2015 Chin. Phys. B 24 074502

    [3]

    Nichita D V, Khalid P, Broseta D 2010 Fluid Phase Equilibr. 291 95

    [4]

    Liu X Z, Wang Y X, Zhu S G, Li G H 2007 J. Engineer. Thermophys. 28 201 (in Chinese) [刘心志, 王益祥, 朱曙光, 李光辉 2007 工程热 28 201]

    [5]

    Holloway W, Sundaresan S 2014 Chem. Eng. Sci. 108 67

    [6]

    Valverde J M 2013 Soft Matter 9 8792

    [7]

    Liu B, Fang D Y, Xia Z X, Wang L 2013 J. Propuls. Technol. 34 8 (in Chinese) [刘冰, 方丁酉, 夏智勋, 王林 2013 推进技术 34 8]

    [8]

    Saito T 2002 J. Comput. Phys. 176 129

    [9]

    Liu L, Wang Y S, Zhou F D 1999 Chin. J. Appl. Mechan. 16 22 (in Chinese) [刘磊, 王跃社, 周芳德 1999 应用力学学报 16 22]

    [10]

    Wang P, Sun H Q, Shao J L, Qin C S, Li X Z 2012 Acta Phys. Sin. 61 234703 (in Chinese) [王裴, 孙海权, 邵建立, 秦承森, 李欣竹 2012 物理学 报 61 234703]

    [11]

    Nguyen D L, Winter E R F, Greirer M 1981 Int. J. Multiphas. Flow 7 311

    [12]

    Zhao J F, Li W 1999 J. Basic Sci. Engineer. 7 321 (in Chinese) [赵建福, 李炜 1999 应用基础与工程科学学报 7 321]

    [13]

    Zeng D L, Zhao L J, Xiao Y 2001 Proceedings of The International Conference on Energy Conversion and Application Wuhan, China 200 65

    [14]

    Huang F, Bai B F, Guo L J 2004 Prog. Nat. Sci. 14 344

    [15]

    Chaudhuri A, Osterhoudt C F, Sinha D N 2012 ASME J. Fluid. Eng. 134 101301

    [16]

    Zhao L J, Li B, Gao H, Li D S, Yuan Y X, Zeng D L 2007 J. Engineer. Thermophys. 28 388 (in Chinese) [赵良举, 李斌, 高虹, 李德胜, 袁悦祥, 曾丹苓 2007 工程热 28 388]

    [17]

    Temkin S 1992 Phys. Fluid A 4 2399

    [18]

    Fang D Y 1988 Two-phase Fluid Dynamics (Changsha: National University of Defense Technology Press) p14-22 (in Chinese) [方丁酉 1988 两相流 动力学(长沙: 国防科技大学出版社) 第 14-22 页]

    [19]

    Li W X 2003 One-Dimensional Nonsteady Flow and Shock Waves (Beijing: National Defence of Industry Press) pp40-49, 206 (in Chinese) [李维新 2003 一维不定常流与冲击波(北京: 国防工业出版社) 第 40-49, 206页]

    [20]

    Snider D M 2001 J. Comput. Phys. 170 523

    [21]

    Harris S E, Crighton D G 1994 J. Fluid Mech. 266 243

    [22]

    Auzerais F M, Jackson R, Russel W B 1988 J. Fluid Mech. 195 437

  • [1] 孙佳坤, 林传栋, 苏咸利, 谭志城, 陈亚楼, 明平剑. 离散Boltzmann方程的求解: 基于有限体积法.  , 2024, 73(11): 110504. doi: 10.7498/aps.73.20231984
    [2] 刘博, 邢朴, 丁松, 谢明军, 冯林, 时晓天. 一种新的可计算可压缩流动的预处理方法.  , 2022, 71(12): 124701. doi: 10.7498/aps.71.20220102
    [3] 范兴华, 谭大鹏, 李霖, 殷梓超, 王彤. 气-液-固三相流混合建模与求解方法.  , 2021, 70(12): 124501. doi: 10.7498/aps.70.20202126
    [4] 彭旭, 李斌, 王顺尧, 饶国宁, 陈网桦. 激波冲击作用下液膜破碎的气液两相流.  , 2020, 69(24): 244702. doi: 10.7498/aps.69.20201051
    [5] 左娟莉, 杨泓, 魏炳乾, 侯精明, 张凯. 气力提升系统气液两相流数值模拟分析.  , 2020, 69(6): 064705. doi: 10.7498/aps.69.20191755
    [6] 娄钦, 黄一帆, 李凌. 不可压幂律流体气-液两相流格子Boltzmann 模型及其在多孔介质内驱替问题中的应用.  , 2019, 68(21): 214702. doi: 10.7498/aps.68.20190873
    [7] 胡嘉懿, 张文欢, 柴振华, 施保昌, 汪一航. 三维不可压缩流的12速多松弛格子Boltzmann模型.  , 2019, 68(23): 234701. doi: 10.7498/aps.68.20190984
    [8] 李洋, 苏婷, 梁宏, 徐江荣. 耦合界面力的两相流相场格子Boltzmann模型.  , 2018, 67(22): 224701. doi: 10.7498/aps.67.20181230
    [9] 李冬冬, 王革, 张斌. 激波作用不同椭圆氦气柱过程中流动混合研究.  , 2018, 67(18): 184702. doi: 10.7498/aps.67.20180879
    [10] 翟路生, 金宁德. 小管径气液两相流空隙率波传播的多尺度相关性.  , 2016, 65(1): 010501. doi: 10.7498/aps.65.010501
    [11] 陈平, 杜亚威, 薛友林. 垂直气液两相流混沌吸引子单元面积分析.  , 2016, 65(3): 034701. doi: 10.7498/aps.65.034701
    [12] 张鹏, 洪延姬, 丁小雨, 沈双晏, 冯喜平. 等离子体对含硼两相流扩散燃烧特性的影响.  , 2015, 64(20): 205203. doi: 10.7498/aps.64.205203
    [13] 赵继波, 孙承纬, 谷卓伟, 赵剑衡, 罗浩. 爆轰驱动固体套筒压缩磁场计算及准等熵过程分析.  , 2015, 64(8): 080701. doi: 10.7498/aps.64.080701
    [14] 丁红兵, 王超, 赵雅坤. 临界流喷嘴喉部氢气等熵指数解析计算与进化回归方法.  , 2014, 63(16): 164701. doi: 10.7498/aps.63.164701
    [15] 高忠科, 胡沥丹, 周婷婷, 金宁德. 两相流有限穿越可视图演化动力学研究.  , 2013, 62(11): 110507. doi: 10.7498/aps.62.110507
    [16] 姚熊亮, 叶曦, 张阿漫. 行波驱动下空泡在可压缩流场中的运动特性研究.  , 2013, 62(24): 244701. doi: 10.7498/aps.62.244701
    [17] 赵俊英, 金宁德. 两相流相空间多元图重心轨迹动力学特征.  , 2012, 61(9): 094701. doi: 10.7498/aps.61.094701
    [18] 危卫, 鲁录义, 顾兆林. 风沙运动的电场-流场耦合模型及气固两相流数值模拟.  , 2012, 61(15): 158301. doi: 10.7498/aps.61.158301
    [19] 孙斌, 王二朋, 郑永军. 气液两相流波动信号的时频谱分析研究.  , 2011, 60(1): 014701. doi: 10.7498/aps.60.014701
    [20] 王 飞, 何 枫. 微管道内两相流数值算法及在电浸润液滴控制中的应用.  , 2006, 55(3): 1005-1010. doi: 10.7498/aps.55.1005
计量
  • 文章访问数:  7366
  • PDF下载量:  230
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-07
  • 修回日期:  2016-01-07
  • 刊出日期:  2016-05-05

/

返回文章
返回
Baidu
map