搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

激光驱动准等熵压缩透明窗口LiF的透明性

张志宇 赵阳 薛全喜 王峰 杨家敏

引用本文:
Citation:

激光驱动准等熵压缩透明窗口LiF的透明性

张志宇, 赵阳, 薛全喜, 王峰, 杨家敏

Optical transparency of transparent window LiF in laser-driven quasi-isentropic compression experiment

Zhang Zhi-Yu, Zhao Yang, Xue Quan-Xi, Wang Feng, Yang Jia-Min
PDF
导出引用
  • LiF在激光驱动高压实验中是比较常见的窗口材料, 其在冲击下透射或反射可见诊断光是作为窗口材料的重要特性. 在神光III原型激光装置上开展了带LiF窗口的铝样品准等熵压缩实验, 采用任意反射面速度干涉仪诊断获得准等熵压缩样品(CH/Al/LiF)的反射率. 实验结果表明在准等熵压缩后期反射率诊断出现致盲现象. 为此, 建立了带透明窗口的样品对诊断光的反射率模型, 模型考虑了窗口LiF压缩后透明性变化. 模型计算的CH/Al/LiF样品对可见光的反射率时间演化过程与实验结果符合较好. 研究结果表明: LiF中压缩波追赶逐渐形成强冲击波, 显著降低了LiF的透明性, 并最终发生致盲现象; 第一性原理方法所给出的LiF的能带间隙偏低1–2 eV; 该实验中, LiF的透明性完全消失时, LiF中波头处的温度约为1 eV, 压力为2–3 Mbar.
    LiF is often used as a window in laser-driven shock experiments, which can transmit and reflect visible probe laser. Researches of LiF transparency almost focus on its optical reflectivity compressed by strong shock, but there is almost no research on its optical transmissivity compressed by weak shock. In order to study the optical transmissivity of LiF, the quasi-isentropic compression experiment is carried out on the ShenGuang-III prototype laser facility, in which the velocity interferometer system for any reflector is used to diagnose the optical reflectivity of the quasi-isentropic compression sample CH/Al/LiF. The experimental results indicate that the velocity interferometer fringes are missing in the late stage of this experiment. The probe laser should penetrate LiF before it hits the rear surface of aluminum and the laser reflected by aluminum should penetrate LiF before it is collected by the velocity interferometer system for any reflector. Therefore, the reflectivity diagnosed by the velocity interferometer system for any reflector is the product of the optical reflectivity of aluminum and the optical transmissivity of LiF under the experimental condition. However, there is no research about the optical transmissivity model of thick LiF compressed by laser-driven shock. In this paper, we develop a transmissivity model for transparent window LiF and simulate the optical reflectivity of sample CH/Al/LiF. Firstly, we simulate the temperature and density of the sample by the code for one-dimensional multigroup radiation hydrodynamics (MULTI-1D). Then, based on the resulting temperature and density, we simulate the optical reflectivity of the sample by using the optical reflectivity model of aluminum and the optical transmissivity model of LiF. Without considering the transparency of LiF, the simulated result indicates that there is no signal missing in the late stage, which is different from the experimental result. By considering the transparency of LiF, the simulated result is in good agreement with the experimental result. The simulated result indicates that the formation of the strong shock, because of the later shock's catching up with the early one, obviously reduces the optical transparency of LiF and finally causes the velocity interferometer fringes to disappear. The simulated result also indicates that the energy gap of LiF calculated from density-functional theory is 1-2 eV. In this experiment, when LiF becomes opaque, its temperature is 1 eV and its pressure is 2-3 Mbar.
    • 基金项目: 国家自然科学基金(批准号: 11304292)和中国工程物理研究院院长基金(批准号: 201402013)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11304292) and the Presidential Foundation of China Academy of Engineering Physics, China (Grant No. 201402013).
    [1]

    Loubeyre P, Brygoo S, Eggert J, Celliers P M, Spaulding D K, Rygg J R, Boehly T R, Collins G W, Jeanloz R 2012 Phys. Rev. B 86 144115

    [2]

    Renaudin P, Blancard C, Clérouin J, Faussurier G, Noiret P, Recoules V 2003 Phys. Rev. Lett. 91 075002

    [3]

    Bridgman P W 1946 Rev. Mod. Phys. 18 1

    [4]

    Jing Q M, Wu Q, Liu L, Bi Y, Zhang Y, Liu S G, Xu J A 2012 Chin. Phys. B 21 106201

    [5]

    Al'Tshuler L V, Bakanova A A, Trunin R F 1962 Sov. Phys. JETP 15 65

    [6]

    Sun B R, Zhan Z J, Liang B, Zhang R J, Wang W K 2012 Chin. Phys. B 21 056101

    [7]

    Nellis W J, Moriarty J A, Mitchell A C, Ross M, Dandrea R G, Ashcroft N W, Holmes N C, Gathers G R 1988 Phys. Rev. Lett. 60 1414

    [8]

    Gu Y, Ni Y L, Wang Y G, Mao C S, Wu F C, Wu J, Zhu J, Wan B G 1988 Acta Phys. Sin. 37 1690 (in Chinese) [顾援, 倪元龙, 王勇刚, 毛楚生, 吴逢春, 吴江, 朱俭, 万炳根 1988 37 1690]

    [9]

    Wang F, Peng X S, Shan L Q, Li M, Xue Q X, Xu T, Wei H Y 2014 Acta Phys. Sin. 63 185202 (in Chinese) [王峰, 彭晓世, 单连强, 李牧, 薛全喜, 徐涛, 魏惠月 2014 63 185202]

    [10]

    Yaakobi B, Boehly T R, Meyerhofer D D, Collins T J B, Remington B A, Allen P G, Pollaine S M, Lorenzana H E, Eggert J H 2005 Phys. Plasmas 12 092703

    [11]

    Mančić A 2010 J. Phys.: Conf. Ser. 257 012009

    [12]

    Ping Y, Coppari F, Hicks D G, Yaakobi B, Fratanduono D E, Hamel S, Eggert J H, Rygg J R, Smith R F, Swift D C, Braun D G, Boehly T R, Collins G W 2013 Phys. Rev. Lett. 111 065501

    [13]

    Barrios M A, Hicks D G, Boehly T R, Fratanduono D E, Eggert J H, Celliers P M, Collins G W, Meyerhofer D D 2010 Phys. Plasmas 17 056307

    [14]

    Basko M, Löwer T, Kondrashov V N, Kendl A R S, Meyer-ter-Vehn J 1997 Phys. Rev. E 56 1019

    [15]

    Huser G, Koenig M, Benuzzi-Mounaix A, Henry E, Vinci T, Faral B, Tomasini M, Telaro B, Batani D 2005 Phys. Plasmas 12 060701

    [16]

    Zhou X M, Wang X S, Li S N, Li J, Li J B, Jing F Q 2007 Acta Phys. Sin. 56 4965 (in Chinese) [周显明, 汪小松, 李赛男, 李俊, 李加波, 经福谦 2007 56 4965]

    [17]

    Knudson M D, Hanson D L, Bailey J E, Hall C A, Asay J R 2003 Phys. Rev. Lett. 90 035505

    [18]

    Hicks D G, Celliers P M, Collins G W, Eggert J H, Moon S J 2003 Phys. Rev. Lett. 91 035502

    [19]

    Fratanduono D E, Boehly T R, Barrios M A, Meyerhofer D D, Eggert J H, Smith R F, Hicks D G, Celliers P M, Braun D G, Collins G W 2011 J. Appl. Phys. 109 123521

    [20]

    Clérouin J, Laudernet Y, Recoules V, Mazevet S 2005 Phys. Rev. B 72 155122

    [21]

    Sajid A, Murtaza G, Reshak A H 2013 Mod. Phys. Lett. B 27 1350061

    [22]

    Xue Q, Wang Z, Jiang S, Wang F, Ye X, Liu J 2014 Phys. Plasmas 21 072709

    [23]

    Wang F, Peng X S, Zhang R, Xu T, Wei H Y, Liu S Y, Wang J J, Li M Z, Jiang X H, Ding Y K 2013 High Power Laser and Particle Beams 25 3158 (in Chinese) [王峰, 彭晓世, 张锐, 徐涛, 魏惠月, 刘慎业, 王建军, 李明中, 蒋小华, 丁永坤 2013 强激光与粒子束 25 3158]

    [24]

    Benuzzi A, Koenig M, Faral B, Krishnan J, Pisani F, Batani D, Bossi S, Beretta D, Hall T, Ellwi S, Huller S, Honrubia J, Grandjouan N 1998 Phys. Plasmas 5 2410

    [25]

    Holm B, Ahuja R, Yourdshahyan Y, Johansson B, Lundqvist B I 1999 Phys. Rev. B 59 12777

    [26]

    Wise J L, Chhabildas L C 1986 Shock Wave in Condensed Matter (edited by GuPta Y M) (New York: Plenum) p441

    [27]

    Furnish M D, Chhabildas L C, Reinhart W D 1999 Int. J. Impact Eng. 23 261

    [28]

    LaLone B M, Fat'yanov O V, Asay J R, Gupta Y M 2008 J. Appl. Phys. 103 093505

  • [1]

    Loubeyre P, Brygoo S, Eggert J, Celliers P M, Spaulding D K, Rygg J R, Boehly T R, Collins G W, Jeanloz R 2012 Phys. Rev. B 86 144115

    [2]

    Renaudin P, Blancard C, Clérouin J, Faussurier G, Noiret P, Recoules V 2003 Phys. Rev. Lett. 91 075002

    [3]

    Bridgman P W 1946 Rev. Mod. Phys. 18 1

    [4]

    Jing Q M, Wu Q, Liu L, Bi Y, Zhang Y, Liu S G, Xu J A 2012 Chin. Phys. B 21 106201

    [5]

    Al'Tshuler L V, Bakanova A A, Trunin R F 1962 Sov. Phys. JETP 15 65

    [6]

    Sun B R, Zhan Z J, Liang B, Zhang R J, Wang W K 2012 Chin. Phys. B 21 056101

    [7]

    Nellis W J, Moriarty J A, Mitchell A C, Ross M, Dandrea R G, Ashcroft N W, Holmes N C, Gathers G R 1988 Phys. Rev. Lett. 60 1414

    [8]

    Gu Y, Ni Y L, Wang Y G, Mao C S, Wu F C, Wu J, Zhu J, Wan B G 1988 Acta Phys. Sin. 37 1690 (in Chinese) [顾援, 倪元龙, 王勇刚, 毛楚生, 吴逢春, 吴江, 朱俭, 万炳根 1988 37 1690]

    [9]

    Wang F, Peng X S, Shan L Q, Li M, Xue Q X, Xu T, Wei H Y 2014 Acta Phys. Sin. 63 185202 (in Chinese) [王峰, 彭晓世, 单连强, 李牧, 薛全喜, 徐涛, 魏惠月 2014 63 185202]

    [10]

    Yaakobi B, Boehly T R, Meyerhofer D D, Collins T J B, Remington B A, Allen P G, Pollaine S M, Lorenzana H E, Eggert J H 2005 Phys. Plasmas 12 092703

    [11]

    Mančić A 2010 J. Phys.: Conf. Ser. 257 012009

    [12]

    Ping Y, Coppari F, Hicks D G, Yaakobi B, Fratanduono D E, Hamel S, Eggert J H, Rygg J R, Smith R F, Swift D C, Braun D G, Boehly T R, Collins G W 2013 Phys. Rev. Lett. 111 065501

    [13]

    Barrios M A, Hicks D G, Boehly T R, Fratanduono D E, Eggert J H, Celliers P M, Collins G W, Meyerhofer D D 2010 Phys. Plasmas 17 056307

    [14]

    Basko M, Löwer T, Kondrashov V N, Kendl A R S, Meyer-ter-Vehn J 1997 Phys. Rev. E 56 1019

    [15]

    Huser G, Koenig M, Benuzzi-Mounaix A, Henry E, Vinci T, Faral B, Tomasini M, Telaro B, Batani D 2005 Phys. Plasmas 12 060701

    [16]

    Zhou X M, Wang X S, Li S N, Li J, Li J B, Jing F Q 2007 Acta Phys. Sin. 56 4965 (in Chinese) [周显明, 汪小松, 李赛男, 李俊, 李加波, 经福谦 2007 56 4965]

    [17]

    Knudson M D, Hanson D L, Bailey J E, Hall C A, Asay J R 2003 Phys. Rev. Lett. 90 035505

    [18]

    Hicks D G, Celliers P M, Collins G W, Eggert J H, Moon S J 2003 Phys. Rev. Lett. 91 035502

    [19]

    Fratanduono D E, Boehly T R, Barrios M A, Meyerhofer D D, Eggert J H, Smith R F, Hicks D G, Celliers P M, Braun D G, Collins G W 2011 J. Appl. Phys. 109 123521

    [20]

    Clérouin J, Laudernet Y, Recoules V, Mazevet S 2005 Phys. Rev. B 72 155122

    [21]

    Sajid A, Murtaza G, Reshak A H 2013 Mod. Phys. Lett. B 27 1350061

    [22]

    Xue Q, Wang Z, Jiang S, Wang F, Ye X, Liu J 2014 Phys. Plasmas 21 072709

    [23]

    Wang F, Peng X S, Zhang R, Xu T, Wei H Y, Liu S Y, Wang J J, Li M Z, Jiang X H, Ding Y K 2013 High Power Laser and Particle Beams 25 3158 (in Chinese) [王峰, 彭晓世, 张锐, 徐涛, 魏惠月, 刘慎业, 王建军, 李明中, 蒋小华, 丁永坤 2013 强激光与粒子束 25 3158]

    [24]

    Benuzzi A, Koenig M, Faral B, Krishnan J, Pisani F, Batani D, Bossi S, Beretta D, Hall T, Ellwi S, Huller S, Honrubia J, Grandjouan N 1998 Phys. Plasmas 5 2410

    [25]

    Holm B, Ahuja R, Yourdshahyan Y, Johansson B, Lundqvist B I 1999 Phys. Rev. B 59 12777

    [26]

    Wise J L, Chhabildas L C 1986 Shock Wave in Condensed Matter (edited by GuPta Y M) (New York: Plenum) p441

    [27]

    Furnish M D, Chhabildas L C, Reinhart W D 1999 Int. J. Impact Eng. 23 261

    [28]

    LaLone B M, Fat'yanov O V, Asay J R, Gupta Y M 2008 J. Appl. Phys. 103 093505

  • [1] 田宝贤, 王钊, 胡凤明, 高智星, 班晓娜, 李静. “天光一号”驱动的聚苯乙烯高压状态方程测量.  , 2021, 70(19): 196401. doi: 10.7498/aps.70.20210240
    [2] 张扬, 薛创, 丁宁, 刘海风, 宋海峰, 张朝辉, 王贵林, 孙顺凯, 宁成, 戴自换, 束小建. 聚龙一号装置磁驱动准等熵压缩实验的一维磁流体力学模拟.  , 2018, 67(3): 030702. doi: 10.7498/aps.67.20171920
    [3] 薛全喜, 江少恩, 王哲斌, 王峰, 赵学庆, 易爱平, 丁永坤, 刘晶儒. 基于神光III原型装置开展的激光直接驱动准等熵压缩研究进展.  , 2018, 67(4): 045202. doi: 10.7498/aps.67.20172159
    [4] 王峰, 彭晓世, 薛全喜, 徐涛, 魏惠月. 基于神光III原型的整形激光直接驱动准等熵压缩实验研究.  , 2015, 64(8): 085202. doi: 10.7498/aps.64.085202
    [5] 赵继波, 孙承纬, 谷卓伟, 赵剑衡, 罗浩. 爆轰驱动固体套筒压缩磁场计算及准等熵过程分析.  , 2015, 64(8): 080701. doi: 10.7498/aps.64.080701
    [6] 吴成国, 武文远, 龚艳春, 戴斌飞, 何苏红, 黄雁华. 高压下Zn2GeO4带隙变化的第一性原理研究.  , 2015, 64(11): 114213. doi: 10.7498/aps.64.114213
    [7] 王峰, 彭晓世, 单连强, 李牧, 薛全喜, 徐涛, 魏惠月. 基于神光Ⅲ原型装置的激光加载条件下准等熵压缩实验研究进展.  , 2014, 63(18): 185202. doi: 10.7498/aps.63.185202
    [8] 单连强, 高宇林, 辛建婷, 王峰, 彭晓世, 徐涛, 周维民, 赵宗清, 曹磊峰, 吴玉迟, 朱斌, 刘红杰, 刘东晓, 税敏, 何颖玲, 詹夏宇, 谷渝秋. 激光驱动气库靶对铝的准等熵压缩实验研究.  , 2012, 61(13): 135204. doi: 10.7498/aps.61.135204
    [9] 徐梅, 令狐荣锋, 李应发, 杨向东, 王晓璐. LiF分子在外电场中的物理性质研究.  , 2012, 61(9): 093102. doi: 10.7498/aps.61.093102
    [10] 李雪梅, 俞宇颖, 张林, 李英华, 叶素华, 翁继东. 100 LiF的低压冲击响应和1550 nm波长下的窗口速度修正.  , 2012, 61(15): 156202. doi: 10.7498/aps.61.156202
    [11] 邓杨, 王如志, 徐利春, 房慧, 严辉. 立方(Ba0.5Sr0.5)TiO3高压诱导带隙变化的第一性原理研究.  , 2011, 60(11): 117309. doi: 10.7498/aps.60.117309
    [12] 何旭, 何林, 唐明杰, 徐明. 第一性原理研究空位点缺陷对高压下LiF的电子结构和光学性质的影响.  , 2011, 60(2): 026102. doi: 10.7498/aps.60.026102
    [13] 黄海军, 沈 强, 罗国强, 张联盟. 利用多层阻抗梯度飞片产生准等熵压缩的理论解析.  , 2007, 56(3): 1538-1542. doi: 10.7498/aps.56.1538
    [14] 李海铭, 巫 翔, 李 炯, 陈栋梁, 储旺盛, 吴自玉. 高压下LiF和NaF的结构稳定性及其电子和光学性质的第一性原理研究.  , 2007, 56(12): 7201-7206. doi: 10.7498/aps.56.7201
    [15] 周显明, 汪小松, 李赛男, 李 俊, 李加波, 经福谦. 强冲击压缩下LiF,Al2O3和LiTaO3单晶的透光性.  , 2007, 56(8): 4965-4970. doi: 10.7498/aps.56.4965
    [16] 陈德艳, 吕铁羽, 黄美纯. BaSe的准粒子能带结构.  , 2006, 55(7): 3597-3600. doi: 10.7498/aps.55.3597
    [17] 沈 强, 张联盟, 王传彬, 华劲松, 谭 华, 经福谦. 梯度飞片材料的波阻抗分布设计与优化.  , 2003, 52(7): 1663-1667. doi: 10.7498/aps.52.1663
    [18] 沈强, 王传彬, 张联盟, 华劲松, 谭华, 经福谦. 为实现准等熵压缩的波阻抗梯度飞片的实验研究.  , 2002, 51(8): 1759-1763. doi: 10.7498/aps.51.1759
    [19] 林星, 张文珍, 吴逢铁, 郑云山, 陈其雄, 孙占鳌. 超短光脉冲通过着色LiF晶体的特性研究.  , 1987, 36(1): 89-94. doi: 10.7498/aps.36.89
    [20] 郑立行, 阮永丰, 郭绍章, 万良风, 李浩. LiF晶体F3+色心的实验研究.  , 1986, 35(9): 1148-1157. doi: 10.7498/aps.35.1148
计量
  • 文章访问数:  6212
  • PDF下载量:  154
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-01-04
  • 修回日期:  2015-06-03
  • 刊出日期:  2015-10-05

/

返回文章
返回
Baidu
map