-
提出了利用Fabry-Perot干涉仪的反射场实现高光谱分辨率激光雷达精细探测大气光学参量的新方法和思路.设计了高光谱分辨率的分光系统,并分析了干涉仪反射场的光谱透过特征曲线.结合高光谱激光雷达探测信号特征,讨论分析了谱分离比和瑞利信号透过率随反射率和腔长的变化曲线,同时结合误差传递公式,建立了仿真分析模型,讨论了回波光束发散角和入射角变化对激光雷达探测结果的影响.结果表明,所提出的Fabry-Perot干涉仪反射场可以实现高光谱分辨率激光雷达探测系统的精细分光,同时探测结果误差随回波光束发散角变化不敏感,控制发散角在10 mrad以内,入射角在1.5 mrad以内时,可以实现气溶胶光学参数廓线的高精度探测.
-
关键词:
- 激光雷达 /
- 高光谱 /
- Fabry-Perot干涉仪 /
- 气溶胶
An accurate aerosol optical property can be obtained by a high spectral resolution lidar (HSRL) technique, which employs a narrow spectral filter to suppress Mie scattering in the lidar return signal. The ability for filter to suppress Rayleigh scattering is critical for the HSRL. In the HSRL system, Rayleigh scattering signal is obtained and aerosol scattering is suppressed at least by a factor of 10-5 through using the narrow filter. Usually, an atomic absorption filter can reach this level. While, the gaseous absorption lines do not exist at many convenient laser wavelengths, thus restricting the development of multi-wavelength HSRL instrument. A new and practical filtering method is proposed to realize the precise detection of atmospheric optical parameters by using the reflection field of Fabry-Perot (FP) interferometer. An optical splitting system with high spectral resolution is designed and its spectral characteristics are analyzed. Based on the characteristic of hyper-spectral lidar detection signal, the variations of spectral separation ratio and Rayleigh signal transmittance with reflectivity and cavity length are discussed. Spectral separation ratio is the transmittance ratio of aerosol scattering signal to molecular scattering signal through the spectral filter. With the increases of FP cavity length and surface reflectivity, the spectral separation ratio decreases and the Rayleigh signal transmission increases. The high spectral separation ratio and Rayleigh signal transmittance can be achieved by the reflection field of FP interferometer when the FP cavity length and reflectivity parameter can be chosen reasonably. We design an FP interferometer with a cavity length of 36 mm and reflectivity of 0.4. Its spectral separation ratio is affected by the echo divergence and incidence angle. The spectral separation ratio keeps unchanged when the beam divergence angle is within 3 mrad and the incident angle of the beam is within 0.5 mrad. In addition, a simulation analysis model is established based on the error propagation. An observed actual Mie-scattering profile is used for analyzing the errors. Moreover, the influences of the divergence angle and the incident angle of the echo beam on detection results are also discussed. The results show that the proposed FP interferometer can achieve fine spectral separation of Mie and Rayleigh scattering signal, and the error of detection result is not sensitive to laser divergence angle. Fine aerosol optical parameters can be achieved when the divergence and incidence angles are controlled within 10 mrad and 1.5 mrad, respectively.-
Keywords:
- lidar /
- high-spectrum /
- Fabry-Perot interferometer /
- aerosol
[1] Shipley S T, Tracy D H, Eloranta E W, Trauger J T, Sroga J T, Roesler F L, Weinman J A 1983 Appl. Opt. 22 3716
[2] Fokitis E, Fetfatzis P, Georgakopoulou A, Maltezos S, Aravantinos A 2009 Nucl. Phys. B 190 61
[3] Foster M J, Bond R, Storey J, Thwaite C, Labandibar J Y, Bakalski I, Heliere A, Delev A, Rees D, Slimm M 2009 Opt. Express 17 3476
[4] Zhang R W, Sun X J, Yan W, Zhao J, Liu L, Li Y, Zhang C L, Zhou J H 2014 Acta Phys. Sin. 63 140703(in Chinese)[张日伟, 孙学金, 严卫, 赵剑, 刘磊, 李岩, 张传亮, 周俊浩2014 63 140703]
[5] Shen F H, Sun D S, Liu C L, Qiu C Q, Shu Z F 2013 Acta Phys. Sin. 62 220702(in Chinese)[沈法华, 孙东松, 刘成林, 仇成群, 舒志峰2013 62 220702]
[6] Burton S P, Ferrare R A, Hostetler C A, Hair J W, Rogers R R, Obland M D, Butler C F, Cook A L, Harper D B, Froyd K D 2012 Atmos. Meas. Tech. 5 73
[7] Cheng Z T, Liu D, Luo J, Yang Y Y, Zhou Y D, Zhang Y P, Duan L L, Su L, Yang L M, Shen Y B, Wang K W, Bai J 2015 Op. Express 23 12117
[8] Shimizu H, Lee S A, She C Y 1983 Appl. Opt. 22 1373
[9] She C Y, Alvarez Ⅱ R J, Caldwell L M, Krueger D A 1992 Opt. Lett. 17 541
[10] Hair J W, Hostetler C A, Cook A L, Harper D B, Ferrare R A, Mack T L, Welch W, Izquierdo L R, Hovis F E 2008 Appl. Opt. 47 6734
[11] Hair J W, Hostetler C A, Ferrare R A, Cook A L, Harper D B 2006 Proceedings of 23rd International Laser Radar Conference 1 411
[12] Song X Q, Guo J J, Yan Z A, Zhang K L, Li Z G, Liu Z S 2008 Prog. Nat. Sci. 18 1009(in Chinese)[宋小全, 郭金家, 闫召爱, 张凯临, 李志刚, 刘智深2008自然科学进展 18 1009]
[13] Guo J J, Yan Z A, Wu S H, Song X Q, Liu Z S 2005 J. Optoelectron. Lasers 19 66(in Chinese)[郭金家, 闫召爱, 吴松华, 宋小全, 刘智深2005光电子激光 19 66]
[14] Hua D X, Uchida M, Kobayashi T 2004 Opt. Lett. 29 1063
[15] Hua D X, Uchida M, Kobayashi T 2005 Appl. Opt. 44 1305
[16] Hua D X, Uchida M, Kobayashi T 2005 Appl. Opt. 44 1315
[17] Liu D, Yang Y Y, Cheng Z T, Huang H L, Zhang B, Ling T, Shen Y B 2013 Opt. Express 21 13084
[18] Cheng Z T, Liu D, Luo J, Yang Y Y, Wang Z F, Zhou Y D, Huang H L, Shen Y B 2014 Acta Opt. Sin. 34 0801003(in Chinese)[成中涛, 刘东, 罗敬, 杨甬英, 王治飞, 周雨迪, 黄寒璐, 沈亦兵2014光学学报 34 0801003]
[19] Cheng Z T, Liu D, Luo J, Yang Y Y, Zhou Y D, Zhang Y P, Duan L L, Su L, Yang L M, Shen Y B, Wang K W, Bai J 2015 Chin. J. Lasers 23 12117(in Chinese)[成中涛, 刘东, 罗敬, 杨甬英, 周雨迪, 张与鹏, 段绿林, 苏林, 杨李茗, 沈亦兵, 汪凯巍, 白剑2015中国激光 23 12117]
[20] Di H G, Zhang Z F, Hua H B, Zhang J Q, Hua D X, Wang Y F, He T Y 2017 Opt. Express 25 5068
-
[1] Shipley S T, Tracy D H, Eloranta E W, Trauger J T, Sroga J T, Roesler F L, Weinman J A 1983 Appl. Opt. 22 3716
[2] Fokitis E, Fetfatzis P, Georgakopoulou A, Maltezos S, Aravantinos A 2009 Nucl. Phys. B 190 61
[3] Foster M J, Bond R, Storey J, Thwaite C, Labandibar J Y, Bakalski I, Heliere A, Delev A, Rees D, Slimm M 2009 Opt. Express 17 3476
[4] Zhang R W, Sun X J, Yan W, Zhao J, Liu L, Li Y, Zhang C L, Zhou J H 2014 Acta Phys. Sin. 63 140703(in Chinese)[张日伟, 孙学金, 严卫, 赵剑, 刘磊, 李岩, 张传亮, 周俊浩2014 63 140703]
[5] Shen F H, Sun D S, Liu C L, Qiu C Q, Shu Z F 2013 Acta Phys. Sin. 62 220702(in Chinese)[沈法华, 孙东松, 刘成林, 仇成群, 舒志峰2013 62 220702]
[6] Burton S P, Ferrare R A, Hostetler C A, Hair J W, Rogers R R, Obland M D, Butler C F, Cook A L, Harper D B, Froyd K D 2012 Atmos. Meas. Tech. 5 73
[7] Cheng Z T, Liu D, Luo J, Yang Y Y, Zhou Y D, Zhang Y P, Duan L L, Su L, Yang L M, Shen Y B, Wang K W, Bai J 2015 Op. Express 23 12117
[8] Shimizu H, Lee S A, She C Y 1983 Appl. Opt. 22 1373
[9] She C Y, Alvarez Ⅱ R J, Caldwell L M, Krueger D A 1992 Opt. Lett. 17 541
[10] Hair J W, Hostetler C A, Cook A L, Harper D B, Ferrare R A, Mack T L, Welch W, Izquierdo L R, Hovis F E 2008 Appl. Opt. 47 6734
[11] Hair J W, Hostetler C A, Ferrare R A, Cook A L, Harper D B 2006 Proceedings of 23rd International Laser Radar Conference 1 411
[12] Song X Q, Guo J J, Yan Z A, Zhang K L, Li Z G, Liu Z S 2008 Prog. Nat. Sci. 18 1009(in Chinese)[宋小全, 郭金家, 闫召爱, 张凯临, 李志刚, 刘智深2008自然科学进展 18 1009]
[13] Guo J J, Yan Z A, Wu S H, Song X Q, Liu Z S 2005 J. Optoelectron. Lasers 19 66(in Chinese)[郭金家, 闫召爱, 吴松华, 宋小全, 刘智深2005光电子激光 19 66]
[14] Hua D X, Uchida M, Kobayashi T 2004 Opt. Lett. 29 1063
[15] Hua D X, Uchida M, Kobayashi T 2005 Appl. Opt. 44 1305
[16] Hua D X, Uchida M, Kobayashi T 2005 Appl. Opt. 44 1315
[17] Liu D, Yang Y Y, Cheng Z T, Huang H L, Zhang B, Ling T, Shen Y B 2013 Opt. Express 21 13084
[18] Cheng Z T, Liu D, Luo J, Yang Y Y, Wang Z F, Zhou Y D, Huang H L, Shen Y B 2014 Acta Opt. Sin. 34 0801003(in Chinese)[成中涛, 刘东, 罗敬, 杨甬英, 王治飞, 周雨迪, 黄寒璐, 沈亦兵2014光学学报 34 0801003]
[19] Cheng Z T, Liu D, Luo J, Yang Y Y, Zhou Y D, Zhang Y P, Duan L L, Su L, Yang L M, Shen Y B, Wang K W, Bai J 2015 Chin. J. Lasers 23 12117(in Chinese)[成中涛, 刘东, 罗敬, 杨甬英, 周雨迪, 张与鹏, 段绿林, 苏林, 杨李茗, 沈亦兵, 汪凯巍, 白剑2015中国激光 23 12117]
[20] Di H G, Zhang Z F, Hua H B, Zhang J Q, Hua D X, Wang Y F, He T Y 2017 Opt. Express 25 5068
计量
- 文章访问数: 6751
- PDF下载量: 219
- 被引次数: 0