-
拉曼分布式光纤测温系统基于拉曼Stokes散射光和anti-Stokes散射光功率进行温度解调,拉曼散射光功率直接影响测温精度。系统中激光脉冲功率以及雪崩光电探测器增益均可能出现随机变化,从而导致获取的拉曼散射光功率波动,因此,本文提出一种基于动态标定的拉曼分布式光纤测温系统方案,通过设置温度标定单元并结合提出的功率校正算法,消除标定单元的温度的动态变化对拉曼散射光功率的贡献,再基于先前标定的数据,分别将拉曼Stokes散射光和拉曼anti-Stokes散射光功率校正到同一激光脉冲功率及雪崩光电探测器增益水平,从而提升系统的测温精度。系统采用50ns的激光脉冲,在4.6km长的单模光纤上开展测温试验,结果显示:在35℃至95℃的测温区间,基于传统的温度解调算法,测温偏差为-5.8℃至+1.0℃,均方根误差为4.0℃,而基于动态标定的校正算法,测温偏差为-0.8℃至+0.9℃,均方根误差为0.5℃。本文提出新的拉曼分布式光纤测温系统具备拉曼散射光功率动态校正功能,有工程推广价值。Distributed optical fiber temperature measurement system is widely used in substation, power cable, natural gas transmission pipeline and other temperature measurement fields. It can continuously measure the temperature information of each position along the sensing. Raman distributed optical fiber temperature measurement system demodulates the temperature information based on Raman Stokes scattered light and anti-Stokes scattered light power, and the Raman scattering light power directly affects the temperature measurement accuracy. So, it is a challenging work to control the hardward of the system to ensure the feasiblity of the Raman sacttering signals. The laser pulse power, and the gain of avalanche photodetector may vary randomly in the system, resulting in fluctuations in the acquired Raman scattered light power data. Therefore, a scheme of Raman distributed fiber temperature measurement system based on dynamic calibration is proposed in this paper, and by setting the temperature calibration unit and combining the proposed power correction algorithm and the previous calibration data, the Raman Stokes scattered light and Raman anti-Stokes scattered light power are calibrated to the same laser pulse power level and avalanche photodetector gain, so as to improve the temperature measurement accuracy of the system. For the performance demonstration of the new scheme, the experimental system adopts 50ns laser pulse to carry out temperature measurement experiments with 4.6km long single-mode fiber. The results show that: within temperature measurement range from 35 ℃ to 95 ℃, based on the traditional temperature demodulation algorithm, the temperature deviation measured is within -5.8 ℃ to+1.0 ℃, and the root mean square error is 4.0 ℃, and by the dynamic calibration algorithm, the deviation of deviation measured is within -0.8℃ ~ +0.9℃ and the root mean square error is 0.5℃. Therefore, the new Raman distributed optical fiber temperature measurement system proposed in this paper has the function to dynamically correct the Raman scattered light power to surpress influence caused by instability of the key devices such as pluse laser, avalanche photodetector and improve the temperature measurement accuracy, which is valuable in practical engineering applications.
-
Keywords:
- Distributed optical fiber sensing /
- Raman scattered light /
- Dynamic calibration /
- Power correction
-
[1] Zhang Z L, Lu Y G, Peng J Q, Ji Z Y 2021Opt. Lett. 46 1776
[2] Ding Z Y, Wang C H, Liu K, Jiang J F, Yang D, Pan G Y, Pu Z L, Liu T G 2018Sensor 18 1072
[3] Liang C S, Bai Q, Yan M, Wang Y, Zhang H J, Jin B Q 2021IEEE Access 9 41647
[4] Huang S L, Liang D W, Liu G 1991Chin. Jour. of Instr. 04 25(in Chinese) [黄尚廉,梁大巍,刘龚1991仪器仪表学报04 25]
[5] Rao Y J 2017Acta Phys. Sin. 66 074207(in Chinese) [饶云江2017 66 074207]
[6] Shang Y, Wang C, 2021Jour. of Appl.Sci. 39 843(in Chinese) [尚盈, 王昌2021应用科学学报39 843]
[7] Jie R M, Xiao C, Liu X, Zhu C, RAO Y J, Liu B 2024Acta Optica. Sin. 44 222(in Chinese) [介瑞敏, 肖春, 刘旭, 朱琛, 饶云江, 刘波2024光学学报44 222]
[8] Duan S H, Tian J, Zhou Z X, Wang X H, Xu B L 2014Las. Jour. 35 47(in Chinese) [段绍辉, 田杰, 周正仙, 王晓华, 徐邦联2014激光杂志35 47]
[9] Zhan Z W, Cantono M, Kamalov V, Mecozzi A, Müller R, Yin S, Castellanos J 2021Sci. 371 931
[10] Huang C, Zhai F C, Fan G 2016Chem. Eng. and Equip. 10 67(in Chinese) [黄程, 翟富超, 范高2016化学工程与装备10 67]
[11] Wang X H 2019Petro. Safe. and Environ. Prote. Technol. 35 41(in Chinese) [王雪辉2019石油化工安全环保技术35 41]
[12] Hu Z A, Wang Q, GU X H, Zhu K, Xu X M, Wu L L HU D 2023Laser and infr. 53 90(in Chinese) [胡子昂, 王强, 谷小红, 朱凯, 徐晓萌, 吴琳琳, 胡栋2023激光与红外53 90]
[13] Zhang M J, Li J, Liu Y, Zhang J Z, Li Y T, Huang Q, Liu R X, Yang S J 2017Chin. Laser.44 219(in Chinese) [张明江, 李健, 刘毅, 张建忠, 李云亭, 黄琦, 刘瑞霞, 杨帅军2017中国激光44 219]
[14] Xie K L, Rao Y J, Ran Z L 2008Acta. Opt. Sin. 03 569(in Chinese) [谢孔利, 饶云江, 冉曾令2008光学学报03 569]
[15] Liu Y P, Li H, Wang J X, Fan X Z, Li X Y, Tian Y, Yi J Y, 2022Proceed. of the CSEE 42 6126(in Chinese) [刘云鹏, 李欢, 高树国, 王佳雪, 范晓舟, 李昕烨, 田源, 尹钧毅2022 中国电机工程学报42 6126]
[16] He Z Y, Liu Y P, Ma L, Yang C, Tong W J 2019Infr. and Laser Eng. 48 285(in Chinese) [何祖源, 刘银萍, 马麟, 杨晨, 童维军2019红外与激光工程48 285]
[17] Li Z Y, Sun W F, Li L M, Wang H H, 2015Acta. Phys. Sin. 64 142(in Chinese) [李政颖, 孙文丰, 李子墨, 王洪海2015 64142]
[18] Lu J H, Wan C G, Jin K, Wang M, Huang G M 2023Laser Jour 44 62(in Chinese) [鲁佳慧, 万成功, 金恺, 王敏, 黄光明2023激光杂志44 62]
[19] Li J, Li Y T, Zhang M J, Liu Y, Zhang J Z, Yan B Q, Wang D, Jin B Q 2018Phot.Senor 8 103
[20] Sun M, Yang S, Tang Y Q, Zhao X H, Zhang Z R, Zhuang F Y, 2022Acta Phys. Sin. 71 31(in Chinese) [孙苗, 杨爽, 汤玉泉, 赵晓虎, 张志荣, 庄飞宇2022 71 31]
[21] Ma T B, Zi B W, Guo Y C, Ling L Y, Huang Y R, Jia X F 2020Acta Phys. Sin. 69 54(in Chinese) [马天兵, 訾保威, 郭永存, 凌六一, 黄友锐, 贾晓芬2020 69 54]
[22] Li S, Wang J Q, Gao Z G, Gao J X, Hou Z M, Jiang L, Hou M Y 2023Infr. and Laser Eng. 52 293(in Chinese) [李硕, 王纪强, 高忠国, 高建新, 侯泽民, 姜龙, 侯墨语2023红外与激光工程52 293]
[23] Chai D D, Zhang H J, Gao Y 2022IEEE Sen. Jour. 23 2204
[24] Lu L D, Yong M C, Wang Q S, Bu X D, Gao Q H 2023Opt. Commun. 529 129096
[25] Li J, Yan B Q, Zhang M J, Zhang J Z, Qiao L J, Wang T 2018App.Opt. 58 37
[26] Feng Y X,Liu Z K,Huang M N,Wang Y S,Lv L D 2024Opt.and Preci.Eng. 322645(in Chinese) [冯玉祥, 刘志凯, 黄闽南, 王一山, 吕立冬2024光学精密工程32 2645]
计量
- 文章访问数: 70
- PDF下载量: 3
- 被引次数: 0