搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于动态标定的拉曼分布式光纤测温系统研究

冯玉祥 汪雨辰 童家欢 吕立冬

引用本文:
Citation:

基于动态标定的拉曼分布式光纤测温系统研究

冯玉祥, 汪雨辰, 童家欢, 吕立冬

Research on Raman distributed fiber temperature measurement system based on dynamic calibration

FENG Yuxiang, WANG Yuchen, TONG Jiahuan, LYU Lidong
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 拉曼分布式光纤测温系统基于拉曼斯托克斯(Stokes)散射光和反斯托克斯(anti-Stokes)散射光功率进行温度解调, 拉曼散射光功率直接影响测温精度. 系统中激光脉冲功率以及雪崩光电探测器增益均可能出现随机变化, 从而导致获取的拉曼散射光功率波动, 因此本文提出一种基于动态标定的拉曼分布式光纤测温系统方案, 通过设置温度标定单元并结合提出的功率校正算法, 消除标定单元的温度的动态变化对拉曼散射光功率的贡献, 再基于先前标定的数据, 分别将拉曼Stokes散射光和拉曼anti-Stokes散射光功率校正到同一激光脉冲功率及雪崩光电探测器增益水平, 从而提升系统的测温精度. 系统采用50 ns的激光脉冲, 在4.6 km长的单模光纤上开展测温试验, 结果显示: 在35—95 ℃的测温区间, 基于传统的温度解调算法, 测温偏差为–5.8 ℃—1.0 ℃, 均方根误差为4.0 ℃, 而基于动态标定的校正算法, 测温偏差为–0.8 ℃—0.9 ℃, 均方根误差为0.5 ℃. 本文提出新的拉曼分布式光纤测温系统具备拉曼散射光功率动态校正功能, 有工程推广价值.
    Distributed optical fiber temperature measurement system is widely used in the fields of substation, power cable, natural gas transmission pipeline and other temperature measurement systems. It can continuously measure the temperature information at each location along the sensing direction. Raman distributed optical fiber temperature measurement system demodulates the temperature information based on Raman Stokes scattered light and anti-Stokes scattered light power, and the Raman scattering light power directly affects the temperature measurement accuracy. So, it is a challenging task to control the hardware of the system to ensure the feasiblity of the Raman sacttering signals. The laser pulse power, and the gain of avalanche photodetector may vary randomly in the system, resulting in fluctuations in the acquired Raman scattered light power data. Therefore, a scheme of Raman distributed fiber temperature measurement system based on dynamic calibration is proposed in this work, and by setting up the temperature calibration unit and combining the proposed power correction algorithm and previous calibration data, the Raman Stokes scattering light and Raman anti-Stokes scattering light power are calibrated at the same laser pulse power level and avalanche photodetector gain, thereby improving the temperature measurement accuracy of the system. For the performance demonstration of the new scheme, the experimental system adopts 50-ns laser pulse to carry out temperature measurement experiments with a 4.6-km long single-mode fiber. The results show that in the temperature measurement range from 35 ℃ to 95 ℃, based on the traditional temperature demodulation algorithm, the temperature deviation measured is in the range from –5.8 ℃ to 1.0 ℃, and the root mean square error is 4.0 ℃, and by the dynamic calibration algorithm, the deviation of deviation measured is within –0.8 ℃–0.9 ℃ and the root mean square error is 0.5 ℃. Therefore, the novel Raman-type distributed optical fiber temperature measurement system proposed in this work has the function to dynamically correct the Raman-type scattered light power to suppress the influence caused by instability of the key devices such as pulsed laser and avalanche photodetector and improve the temperature measurement accuracy, which is valuable in practical engineering applications.
  • 图 1  实验系统原理图

    Fig. 1.  Schematic diagram of experimental system. LS, laser source; AOM, acousto-optic modulator; EDFA, erbium doped fiber amplifier; WDM, wavelength division multiplexer; TCU, temperature calibration unit; FUT, fiber under test; CTB, constant temperature box; APD, avalanche photo detector; DAQ, data acquisition card; PC, personal computer.

    图 2  时域拉曼散射功率曲线 (a)斯托克斯光; (b)反斯托克斯光

    Fig. 2.  Time domain Raman scattering power traces: (a) Stokes; (b) anti-Stokes.

    图 3  时域拉曼标定拟合功率曲线 (a)斯托克斯光; (b)反斯托克斯光

    Fig. 3.  Time domain Raman calibration fitting the power traces: (a) Stokes; (b) anti-Stokes.

    图 4  时域拉曼动态标定及校正后功率曲线 (a)斯托克斯光; (b)反斯托克斯光

    Fig. 4.  Time domain Raman dynamic calibration and corrected power traces: (a) Stokes; (b) anti-Stokes.

    图 5  传统双路温度解调结果

    Fig. 5.  Results of traditional dual-channel temperature demodulation.

    图 6  散射光动态标定及校正算法解调结果

    Fig. 6.  Demodulation results of scattered light dynamic calibration and correction algorithm.

    图 7  空间分辨率

    Fig. 7.  Spatial resolution.

    表 1  传统双路温度数据对比

    Table 1.  Traditional dual-channel temperature data comparison.

    实际温度/℃测得温度/℃误差/℃
    35.036.0+1.0
    45.043.0–2.0
    55.050.4–4.6
    65.064.1–0.9
    75.069.6–5.4
    85.080.2–4.8
    95.089.2–5.8
    下载: 导出CSV

    表 2  基于动态标定及校正算法温度数据对比

    Table 2.  Temperature data comparison based on dynamic calibration and calibration algorithm

    实际温度/℃测得温度/℃比值H1比值H2误差/℃
    35.035.41.01801.0150+0.4
    45.045.31.01001.0225+0.3
    55.054.61.01411.0350–0.4
    65.064.21.03651.0366–0.8
    75.075.21.02041.0443+0.2
    85.085.91.02501.0478+0.9
    95.095.51.02631.0500+0.5
    下载: 导出CSV
    Baidu
  • [1]

    Zhang Z L, Lu Y G, Peng J Q, Ji Z Y 2021 Opt. Lett. 46 1776Google Scholar

    [2]

    Ding Z Y, Wang C H, Liu K, Jiang J F, Yang D, Pan G Y, Pu Z L, Liu T G 2018 Sensors 18 1072Google Scholar

    [3]

    Liang C S, Bai Q, Yan M, Wang Y, Zhang H J, Jin B Q 2021 IEEE Access 9 41647Google Scholar

    [4]

    黄尚廉, 梁大巍, 刘龚 1991 仪器仪表学报 04 25

    Huang S L, Liang D W, Liu G 1991 Chin. J. Sci. Instrum. 04 25

    [5]

    饶云江 2017 66 074207Google Scholar

    Rao Y J 2017 Acta Phys. Sin. 66 074207Google Scholar

    [6]

    尚盈, 王昌 2021 应用科学学报 39 843

    Shang Y, Wang C, 2021 J. Appl. Sci. 39 843

    [7]

    介瑞敏, 肖春, 刘旭, 朱琛, 饶云江, 刘波 2024 光学学报 44 0106011Google Scholar

    Jie R M, Xiao C, Liu X, Zhu C, RAO Y J, Liu B 2024 Acta Opt. Sin. 44 0106011Google Scholar

    [8]

    段绍辉, 田杰, 周正仙, 王晓华, 徐邦联 2014 激光杂志 35 47

    Duan S H, Tian J, Zhou Z X, Wang X H, Xu B L 2014 Laser J. 35 47

    [9]

    Zhan Z W, Cantono M, Kamalov V, Mecozzi A, Müller R, Yin S, Castellanos J C 2021 Science 371 931Google Scholar

    [10]

    黄程, 翟富超, 范高 2016 化学工程与装备 10 67

    Huang C, Zhai F C, Fan G 2016 Chem. Eng. Equip. 10 67

    [11]

    王雪辉 2019 石油化工安全环保技术 35 41

    Wang X H 2019 Petrotrochem. Saf. Environ. Prot. Technol. 35 41

    [12]

    胡子昂, 王强, 谷小红, 朱凯, 徐晓萌, 吴琳琳, 胡栋 2023 激光与红外 53 90

    Hu Z A, Wang Q, GU X H, Zhu K, Xu X M, Wu L L HU D 2023 Laser Infrared 53 90

    [13]

    张明江, 李健, 刘毅, 张建忠, 李云亭, 黄琦, 刘瑞霞, 杨帅军 2017 中国激光 44 0306002Google Scholar

    Zhang M J, Li J, Liu Y, Zhang J Z, Li Y T, Huang Q, Liu R X, Yang S J 2017 Chin. J. Lasers 44 0306002Google Scholar

    [14]

    谢孔利, 饶云江, 冉曾令 2008 光学学报 28 569Google Scholar

    Xie K L, Rao Y J, Ran Z L 2008 Acta. Opt. Sin. 28 569Google Scholar

    [15]

    刘云鹏, 李欢, 高树国, 王佳雪, 范晓舟, 李昕烨, 田源, 尹钧毅 2022 中国电机工程学报 42 6126

    Liu Y P, Li H, Wang J X, Fan X Z, Li X Y, Tian Y, Yi J Y, 2022 Proc. CSEE 42 6126

    [16]

    何祖源, 刘银萍, 马麟, 杨晨, 童维军 2019 红外与激光工程 48 0422002Google Scholar

    He Z Y, Liu Y P, Ma L, Yang C, Tong W J 2019 Infrared Laser Eng. 48 0422002Google Scholar

    [17]

    李政颖, 孙文丰, 李子墨, 王洪海 2015 64 234207Google Scholar

    Li Z Y, Sun W F, Li L M, Wang H H 2015 Acta. Phys. Sin. 64 234207Google Scholar

    [18]

    鲁佳慧, 万成功, 金恺, 王敏, 黄光明 2023 激光杂志 44 62

    Lu J H, Wan C G, Jin K, Wang M, Huang G M 2023 Laser J. 44 62

    [19]

    Li J, Li Y T, Zhang M J, Liu Y, Zhang J Z, Yan B Q, Wang D, Jin B Q 2018 Photonic Sensors 8 103Google Scholar

    [20]

    孙苗, 杨爽, 汤玉泉, 赵晓虎, 张志荣, 庄飞宇 2022 71 200701Google Scholar

    Sun M, Yang S, Tang Y Q, Zhao X H, Zhang Z R, Zhuang F Y, 2022 Acta Phys. Sin. 71 200701Google Scholar

    [21]

    马天兵, 訾保威, 郭永存, 凌六一, 黄友锐, 贾晓芬 2020 69 030701Google Scholar

    Ma T B, Zi B W, Guo Y C, Ling L Y, Huang Y R, Jia X F 2020 Acta Phys. Sin. 69 030701Google Scholar

    [22]

    李硕, 王纪强, 高忠国, 高建新, 侯泽民, 姜龙, 侯墨语 2023 红外与激光工程 52 20230076Google Scholar

    Li S, Wang J Q, Gao Z G, Gao J X, Hou Z M, Jiang L, Hou M Y 2023 Infrared Laser Eng. 52 20230076Google Scholar

    [23]

    Chai D D, Zhang H J, Gao Y 2022 IEEE Sens. J. 23 2204

    [24]

    Lu L D, Yong M C, Wang Q S, Bu X D, Gao Q H 2023 Opt. Commun. 529 129096Google Scholar

    [25]

    Li J, Yan B Q, Zhang M J, Zhang J Z, Qiao L J, Wang T 2018 App. Opt. 58 37

    [26]

    冯玉祥, 刘志凯, 黄闽南, 王一山, 吕立冬 2024 光学精密工程 32 2645Google Scholar

    Feng Y X, Liu Z K, Huang M N, Wang Y S, Lv L D 2024 Opt. Precis. Eng. 32 2645Google Scholar

  • [1] 孙苗, 杨爽, 汤玉泉, 赵晓虎, 张志荣, 庄飞宇. 基于拉曼散射光动态校准的分布式光纤温度传感系统.  , doi: 10.7498/aps.71.20220611
    [2] 杨玉莲, 刘黎明, 邓庆雪, 贾新鸿, 梁文燕, 姜利, 宋伟杰, 牟欣扬. 非线性效应对前向受激布里渊散射分布式传感的影响.  , doi: 10.7498/aps.71.20220313
    [3] 王亚辉, 赵乐, 胡鑫鑫, 郭阳, 张建忠, 乔丽君, 王涛, 高少华, 张明江. 高精度双斜坡辅助式混沌布里渊光纤动态应变传感.  , doi: 10.7498/aps.70.20201892
    [4] 马天兵, 訾保威, 郭永存, 凌六一, 黄友锐, 贾晓芬. 基于拟合衰减差自补偿的分布式光纤温度传感器.  , doi: 10.7498/aps.69.20191456
    [5] 刘铁根, 于哲, 江俊峰, 刘琨, 张学智, 丁振扬, 王双, 胡浩丰, 韩群, 张红霞, 李志宏. 更正:分立式与分布式光纤传感关键技术研究进展[ 2017,66(7):070705].  , doi: 10.7498/aps.66.099901
    [6] 饶云江. 长距离分布式光纤传感技术研究进展.  , doi: 10.7498/aps.66.074207
    [7] 刘铁根, 于哲, 江俊峰, 刘琨, 张学智, 丁振扬, 王双, 胡浩丰, 韩群, 张红霞, 李志宏. 分立式与分布式光纤传感关键技术研究进展.  , doi: 10.7498/aps.66.070705
    [8] 裴丽, 吴良英, 王建帅, 李晶, 宁提纲. 啁啾相移光纤光栅分布式应变与应变点精确定位传感研究.  , doi: 10.7498/aps.66.070702
    [9] 陈文杰, 江俊峰, 刘琨, 王双, 马喆, 张晚琛, 刘铁根. 基于相干光时域反射型的光纤分布式声增敏传感研究.  , doi: 10.7498/aps.66.070706
    [10] 桂鑫, 胡陈晨, 谢莹, 李政颖. 分布式本征型法布里-珀罗传感器的研究.  , doi: 10.7498/aps.64.050704
    [11] 王杰, 贾新鸿, 饶云江, 吴慧娟. 基于双向拉曼放大的相位敏感光时域反射仪.  , doi: 10.7498/aps.62.044212
    [12] 马成举, 任立勇, 唐峰, 屈恩世, 徐金涛, 梁权, 王舰, 韩旭. 基于分布式光纤Bragg光栅传感技术的光缆卷盘静态压力研究.  , doi: 10.7498/aps.61.054702
    [13] 程为彬, 康思民, 汪跃龙, 汤楠, 郭颖娜, 霍爱清. 功率因数校正Boost变换器中快时标不稳定的形成与参数动态共振.  , doi: 10.7498/aps.60.020506
    [14] 张超, 饶云江, 贾新鸿, 邓坤, 苌亮, 冉曾令. 光脉冲编码对基于拉曼放大的布里渊光时域分析系统的影响.  , doi: 10.7498/aps.60.104211
    [15] 韩茹, 樊晓桠, 杨银堂. n-SiC拉曼散射光谱的温度特性.  , doi: 10.7498/aps.59.4261
    [16] 张超, 饶云江, 贾新鸿, 苌亮, 冉曾令. 基于双向拉曼放大的布里渊光时域分析系统.  , doi: 10.7498/aps.59.5523
    [17] 孙琪真, 刘德明, 王 健. 基于环结构的新型分布式光纤振动传感系统.  , doi: 10.7498/aps.56.5903
    [18] 童 治, 魏 淮, 简水生. 分布式光纤拉曼放大器在长距离光传输系统中的优化设计.  , doi: 10.7498/aps.55.1873
    [19] 张晓丹, 赵 颖, 朱 锋, 魏长春, 吴春亚, 高艳涛, 侯国付, 孙 建, 耿新华, 熊绍珍. VHF-PECVD低温制备微晶硅薄膜的拉曼散射光谱和光发射谱研究.  , doi: 10.7498/aps.54.445
    [20] 周晓军, 杜 东, 龚俊杰. 偏振模耦合分布式光纤传感器空间分辨率研究.  , doi: 10.7498/aps.54.2106
计量
  • 文章访问数:  325
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-27
  • 修回日期:  2025-12-30
  • 上网日期:  2025-02-14

/

返回文章
返回
Baidu
map