搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于动态标定的拉曼分布式光纤测温系统研究

冯玉祥 汪雨辰 童家欢 吕立冬

引用本文:
Citation:

基于动态标定的拉曼分布式光纤测温系统研究

冯玉祥, 汪雨辰, 童家欢, 吕立冬

Research on Raman distributed fiber temperature measurement system based on dynamic calibration

Feng Yu Xiang, Wang Yu Chen, Tong Jia Huan, LYU Li Dong
PDF
导出引用
  • 拉曼分布式光纤测温系统基于拉曼Stokes散射光和anti-Stokes散射光功率进行温度解调,拉曼散射光功率直接影响测温精度。系统中激光脉冲功率以及雪崩光电探测器增益均可能出现随机变化,从而导致获取的拉曼散射光功率波动,因此,本文提出一种基于动态标定的拉曼分布式光纤测温系统方案,通过设置温度标定单元并结合提出的功率校正算法,消除标定单元的温度的动态变化对拉曼散射光功率的贡献,再基于先前标定的数据,分别将拉曼Stokes散射光和拉曼anti-Stokes散射光功率校正到同一激光脉冲功率及雪崩光电探测器增益水平,从而提升系统的测温精度。系统采用50ns的激光脉冲,在4.6km长的单模光纤上开展测温试验,结果显示:在35℃至95℃的测温区间,基于传统的温度解调算法,测温偏差为-5.8℃至+1.0℃,均方根误差为4.0℃,而基于动态标定的校正算法,测温偏差为-0.8℃至+0.9℃,均方根误差为0.5℃。本文提出新的拉曼分布式光纤测温系统具备拉曼散射光功率动态校正功能,有工程推广价值。
    Distributed optical fiber temperature measurement system is widely used in substation, power cable, natural gas transmission pipeline and other temperature measurement fields. It can continuously measure the temperature information of each position along the sensing. Raman distributed optical fiber temperature measurement system demodulates the temperature information based on Raman Stokes scattered light and anti-Stokes scattered light power, and the Raman scattering light power directly affects the temperature measurement accuracy. So, it is a challenging work to control the hardward of the system to ensure the feasiblity of the Raman sacttering signals. The laser pulse power, and the gain of avalanche photodetector may vary randomly in the system, resulting in fluctuations in the acquired Raman scattered light power data. Therefore, a scheme of Raman distributed fiber temperature measurement system based on dynamic calibration is proposed in this paper, and by setting the temperature calibration unit and combining the proposed power correction algorithm and the previous calibration data, the Raman Stokes scattered light and Raman anti-Stokes scattered light power are calibrated to the same laser pulse power level and avalanche photodetector gain, so as to improve the temperature measurement accuracy of the system. For the performance demonstration of the new scheme, the experimental system adopts 50ns laser pulse to carry out temperature measurement experiments with 4.6km long single-mode fiber. The results show that: within temperature measurement range from 35 ℃ to 95 ℃, based on the traditional temperature demodulation algorithm, the temperature deviation measured is within -5.8 ℃ to+1.0 ℃, and the root mean square error is 4.0 ℃, and by the dynamic calibration algorithm, the deviation of deviation measured is within -0.8℃ ~ +0.9℃ and the root mean square error is 0.5℃. Therefore, the new Raman distributed optical fiber temperature measurement system proposed in this paper has the function to dynamically correct the Raman scattered light power to surpress influence caused by instability of the key devices such as pluse laser, avalanche photodetector and improve the temperature measurement accuracy, which is valuable in practical engineering applications.
  • [1]

    Zhang Z L, Lu Y G, Peng J Q, Ji Z Y 2021Opt. Lett. 46 1776

    [2]

    Ding Z Y, Wang C H, Liu K, Jiang J F, Yang D, Pan G Y, Pu Z L, Liu T G 2018Sensor 18 1072

    [3]

    Liang C S, Bai Q, Yan M, Wang Y, Zhang H J, Jin B Q 2021IEEE Access 9 41647

    [4]

    Huang S L, Liang D W, Liu G 1991Chin. Jour. of Instr. 04 25(in Chinese) [黄尚廉,梁大巍,刘龚1991仪器仪表学报04 25]

    [5]

    Rao Y J 2017Acta Phys. Sin. 66 074207(in Chinese) [饶云江2017 66 074207]

    [6]

    Shang Y, Wang C, 2021Jour. of Appl.Sci. 39 843(in Chinese) [尚盈, 王昌2021应用科学学报39 843]

    [7]

    Jie R M, Xiao C, Liu X, Zhu C, RAO Y J, Liu B 2024Acta Optica. Sin. 44 222(in Chinese) [介瑞敏, 肖春, 刘旭, 朱琛, 饶云江, 刘波2024光学学报44 222]

    [8]

    Duan S H, Tian J, Zhou Z X, Wang X H, Xu B L 2014Las. Jour. 35 47(in Chinese) [段绍辉, 田杰, 周正仙, 王晓华, 徐邦联2014激光杂志35 47]

    [9]

    Zhan Z W, Cantono M, Kamalov V, Mecozzi A, Müller R, Yin S, Castellanos J 2021Sci. 371 931

    [10]

    Huang C, Zhai F C, Fan G 2016Chem. Eng. and Equip. 10 67(in Chinese) [黄程, 翟富超, 范高2016化学工程与装备10 67]

    [11]

    Wang X H 2019Petro. Safe. and Environ. Prote. Technol. 35 41(in Chinese) [王雪辉2019石油化工安全环保技术35 41]

    [12]

    Hu Z A, Wang Q, GU X H, Zhu K, Xu X M, Wu L L HU D 2023Laser and infr. 53 90(in Chinese) [胡子昂, 王强, 谷小红, 朱凯, 徐晓萌, 吴琳琳, 胡栋2023激光与红外53 90]

    [13]

    Zhang M J, Li J, Liu Y, Zhang J Z, Li Y T, Huang Q, Liu R X, Yang S J 2017Chin. Laser.44 219(in Chinese) [张明江, 李健, 刘毅, 张建忠, 李云亭, 黄琦, 刘瑞霞, 杨帅军2017中国激光44 219]

    [14]

    Xie K L, Rao Y J, Ran Z L 2008Acta. Opt. Sin. 03 569(in Chinese) [谢孔利, 饶云江, 冉曾令2008光学学报03 569]

    [15]

    Liu Y P, Li H, Wang J X, Fan X Z, Li X Y, Tian Y, Yi J Y, 2022Proceed. of the CSEE 42 6126(in Chinese) [刘云鹏, 李欢, 高树国, 王佳雪, 范晓舟, 李昕烨, 田源, 尹钧毅2022 中国电机工程学报42 6126]

    [16]

    He Z Y, Liu Y P, Ma L, Yang C, Tong W J 2019Infr. and Laser Eng. 48 285(in Chinese) [何祖源, 刘银萍, 马麟, 杨晨, 童维军2019红外与激光工程48 285]

    [17]

    Li Z Y, Sun W F, Li L M, Wang H H, 2015Acta. Phys. Sin. 64 142(in Chinese) [李政颖, 孙文丰, 李子墨, 王洪海2015 64142]

    [18]

    Lu J H, Wan C G, Jin K, Wang M, Huang G M 2023Laser Jour 44 62(in Chinese) [鲁佳慧, 万成功, 金恺, 王敏, 黄光明2023激光杂志44 62]

    [19]

    Li J, Li Y T, Zhang M J, Liu Y, Zhang J Z, Yan B Q, Wang D, Jin B Q 2018Phot.Senor 8 103

    [20]

    Sun M, Yang S, Tang Y Q, Zhao X H, Zhang Z R, Zhuang F Y, 2022Acta Phys. Sin. 71 31(in Chinese) [孙苗, 杨爽, 汤玉泉, 赵晓虎, 张志荣, 庄飞宇2022 71 31]

    [21]

    Ma T B, Zi B W, Guo Y C, Ling L Y, Huang Y R, Jia X F 2020Acta Phys. Sin. 69 54(in Chinese) [马天兵, 訾保威, 郭永存, 凌六一, 黄友锐, 贾晓芬2020 69 54]

    [22]

    Li S, Wang J Q, Gao Z G, Gao J X, Hou Z M, Jiang L, Hou M Y 2023Infr. and Laser Eng. 52 293(in Chinese) [李硕, 王纪强, 高忠国, 高建新, 侯泽民, 姜龙, 侯墨语2023红外与激光工程52 293]

    [23]

    Chai D D, Zhang H J, Gao Y 2022IEEE Sen. Jour. 23 2204

    [24]

    Lu L D, Yong M C, Wang Q S, Bu X D, Gao Q H 2023Opt. Commun. 529 129096

    [25]

    Li J, Yan B Q, Zhang M J, Zhang J Z, Qiao L J, Wang T 2018App.Opt. 58 37

    [26]

    Feng Y X,Liu Z K,Huang M N,Wang Y S,Lv L D 2024Opt.and Preci.Eng. 322645(in Chinese) [冯玉祥, 刘志凯, 黄闽南, 王一山, 吕立冬2024光学精密工程32 2645]

  • [1] 孙苗, 杨爽, 汤玉泉, 赵晓虎, 张志荣, 庄飞宇. 基于拉曼散射光动态校准的分布式光纤温度传感系统.  , doi: 10.7498/aps.71.20220611
    [2] 杨玉莲, 刘黎明, 邓庆雪, 贾新鸿, 梁文燕, 姜利, 宋伟杰, 牟欣扬. 非线性效应对前向受激布里渊散射分布式传感的影响.  , doi: 10.7498/aps.71.20220313
    [3] 王亚辉, 赵乐, 胡鑫鑫, 郭阳, 张建忠, 乔丽君, 王涛, 高少华, 张明江. 高精度双斜坡辅助式混沌布里渊光纤动态应变传感.  , doi: 10.7498/aps.70.20201892
    [4] 马天兵, 訾保威, 郭永存, 凌六一, 黄友锐, 贾晓芬. 基于拟合衰减差自补偿的分布式光纤温度传感器.  , doi: 10.7498/aps.69.20191456
    [5] 刘铁根, 于哲, 江俊峰, 刘琨, 张学智, 丁振扬, 王双, 胡浩丰, 韩群, 张红霞, 李志宏. 更正:分立式与分布式光纤传感关键技术研究进展[ 2017,66(7):070705].  , doi: 10.7498/aps.66.099901
    [6] 裴丽, 吴良英, 王建帅, 李晶, 宁提纲. 啁啾相移光纤光栅分布式应变与应变点精确定位传感研究.  , doi: 10.7498/aps.66.070702
    [7] 饶云江. 长距离分布式光纤传感技术研究进展.  , doi: 10.7498/aps.66.074207
    [8] 刘铁根, 于哲, 江俊峰, 刘琨, 张学智, 丁振扬, 王双, 胡浩丰, 韩群, 张红霞, 李志宏. 分立式与分布式光纤传感关键技术研究进展.  , doi: 10.7498/aps.66.070705
    [9] 陈文杰, 江俊峰, 刘琨, 王双, 马喆, 张晚琛, 刘铁根. 基于相干光时域反射型的光纤分布式声增敏传感研究.  , doi: 10.7498/aps.66.070706
    [10] 桂鑫, 胡陈晨, 谢莹, 李政颖. 分布式本征型法布里-珀罗传感器的研究.  , doi: 10.7498/aps.64.050704
    [11] 王杰, 贾新鸿, 饶云江, 吴慧娟. 基于双向拉曼放大的相位敏感光时域反射仪.  , doi: 10.7498/aps.62.044212
    [12] 马成举, 任立勇, 唐峰, 屈恩世, 徐金涛, 梁权, 王舰, 韩旭. 基于分布式光纤Bragg光栅传感技术的光缆卷盘静态压力研究.  , doi: 10.7498/aps.61.054702
    [13] 程为彬, 康思民, 汪跃龙, 汤楠, 郭颖娜, 霍爱清. 功率因数校正Boost变换器中快时标不稳定的形成与参数动态共振.  , doi: 10.7498/aps.60.020506
    [14] 张超, 饶云江, 贾新鸿, 邓坤, 苌亮, 冉曾令. 光脉冲编码对基于拉曼放大的布里渊光时域分析系统的影响.  , doi: 10.7498/aps.60.104211
    [15] 韩茹, 樊晓桠, 杨银堂. n-SiC拉曼散射光谱的温度特性.  , doi: 10.7498/aps.59.4261
    [16] 张超, 饶云江, 贾新鸿, 苌亮, 冉曾令. 基于双向拉曼放大的布里渊光时域分析系统.  , doi: 10.7498/aps.59.5523
    [17] 孙琪真, 刘德明, 王 健. 基于环结构的新型分布式光纤振动传感系统.  , doi: 10.7498/aps.56.5903
    [18] 童 治, 魏 淮, 简水生. 分布式光纤拉曼放大器在长距离光传输系统中的优化设计.  , doi: 10.7498/aps.55.1873
    [19] 张晓丹, 赵 颖, 朱 锋, 魏长春, 吴春亚, 高艳涛, 侯国付, 孙 建, 耿新华, 熊绍珍. VHF-PECVD低温制备微晶硅薄膜的拉曼散射光谱和光发射谱研究.  , doi: 10.7498/aps.54.445
    [20] 周晓军, 杜 东, 龚俊杰. 偏振模耦合分布式光纤传感器空间分辨率研究.  , doi: 10.7498/aps.54.2106
计量
  • 文章访问数:  70
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 上网日期:  2025-02-14

/

返回文章
返回
Baidu
map