Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Design and analysis of high-spectral resolution lidar discriminator

Di Hui-Ge Hua Hang-Bo Zhang Jia-Qi Zhang Zhan-Fei Hua Deng-Xin Gao Fei Wang Li Xin Wen-Hui Zhao Heng

Citation:

Design and analysis of high-spectral resolution lidar discriminator

Di Hui-Ge, Hua Hang-Bo, Zhang Jia-Qi, Zhang Zhan-Fei, Hua Deng-Xin, Gao Fei, Wang Li, Xin Wen-Hui, Zhao Heng
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • An accurate aerosol optical property can be obtained by a high spectral resolution lidar (HSRL) technique, which employs a narrow spectral filter to suppress Mie scattering in the lidar return signal. The ability for filter to suppress Rayleigh scattering is critical for the HSRL. In the HSRL system, Rayleigh scattering signal is obtained and aerosol scattering is suppressed at least by a factor of 10-5 through using the narrow filter. Usually, an atomic absorption filter can reach this level. While, the gaseous absorption lines do not exist at many convenient laser wavelengths, thus restricting the development of multi-wavelength HSRL instrument. A new and practical filtering method is proposed to realize the precise detection of atmospheric optical parameters by using the reflection field of Fabry-Perot (FP) interferometer. An optical splitting system with high spectral resolution is designed and its spectral characteristics are analyzed. Based on the characteristic of hyper-spectral lidar detection signal, the variations of spectral separation ratio and Rayleigh signal transmittance with reflectivity and cavity length are discussed. Spectral separation ratio is the transmittance ratio of aerosol scattering signal to molecular scattering signal through the spectral filter. With the increases of FP cavity length and surface reflectivity, the spectral separation ratio decreases and the Rayleigh signal transmission increases. The high spectral separation ratio and Rayleigh signal transmittance can be achieved by the reflection field of FP interferometer when the FP cavity length and reflectivity parameter can be chosen reasonably. We design an FP interferometer with a cavity length of 36 mm and reflectivity of 0.4. Its spectral separation ratio is affected by the echo divergence and incidence angle. The spectral separation ratio keeps unchanged when the beam divergence angle is within 3 mrad and the incident angle of the beam is within 0.5 mrad. In addition, a simulation analysis model is established based on the error propagation. An observed actual Mie-scattering profile is used for analyzing the errors. Moreover, the influences of the divergence angle and the incident angle of the echo beam on detection results are also discussed. The results show that the proposed FP interferometer can achieve fine spectral separation of Mie and Rayleigh scattering signal, and the error of detection result is not sensitive to laser divergence angle. Fine aerosol optical parameters can be achieved when the divergence and incidence angles are controlled within 10 mrad and 1.5 mrad, respectively.
      Corresponding author: Hua Deng-Xin, dengxinhua@xaut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61575160, 61308107, 41627807) and the Shaanxi Province Youth Science and Technology Talent Fund, China (Grant No. 2016KJXX-72).
    [1]

    Shipley S T, Tracy D H, Eloranta E W, Trauger J T, Sroga J T, Roesler F L, Weinman J A 1983 Appl. Opt. 22 3716

    [2]

    Fokitis E, Fetfatzis P, Georgakopoulou A, Maltezos S, Aravantinos A 2009 Nucl. Phys. B 190 61

    [3]

    Foster M J, Bond R, Storey J, Thwaite C, Labandibar J Y, Bakalski I, Heliere A, Delev A, Rees D, Slimm M 2009 Opt. Express 17 3476

    [4]

    Zhang R W, Sun X J, Yan W, Zhao J, Liu L, Li Y, Zhang C L, Zhou J H 2014 Acta Phys. Sin. 63 140703(in Chinese)[张日伟, 孙学金, 严卫, 赵剑, 刘磊, 李岩, 张传亮, 周俊浩2014 63 140703]

    [5]

    Shen F H, Sun D S, Liu C L, Qiu C Q, Shu Z F 2013 Acta Phys. Sin. 62 220702(in Chinese)[沈法华, 孙东松, 刘成林, 仇成群, 舒志峰2013 62 220702]

    [6]

    Burton S P, Ferrare R A, Hostetler C A, Hair J W, Rogers R R, Obland M D, Butler C F, Cook A L, Harper D B, Froyd K D 2012 Atmos. Meas. Tech. 5 73

    [7]

    Cheng Z T, Liu D, Luo J, Yang Y Y, Zhou Y D, Zhang Y P, Duan L L, Su L, Yang L M, Shen Y B, Wang K W, Bai J 2015 Op. Express 23 12117

    [8]

    Shimizu H, Lee S A, She C Y 1983 Appl. Opt. 22 1373

    [9]

    She C Y, Alvarez Ⅱ R J, Caldwell L M, Krueger D A 1992 Opt. Lett. 17 541

    [10]

    Hair J W, Hostetler C A, Cook A L, Harper D B, Ferrare R A, Mack T L, Welch W, Izquierdo L R, Hovis F E 2008 Appl. Opt. 47 6734

    [11]

    Hair J W, Hostetler C A, Ferrare R A, Cook A L, Harper D B 2006 Proceedings of 23rd International Laser Radar Conference 1 411

    [12]

    Song X Q, Guo J J, Yan Z A, Zhang K L, Li Z G, Liu Z S 2008 Prog. Nat. Sci. 18 1009(in Chinese)[宋小全, 郭金家, 闫召爱, 张凯临, 李志刚, 刘智深2008自然科学进展 18 1009]

    [13]

    Guo J J, Yan Z A, Wu S H, Song X Q, Liu Z S 2005 J. Optoelectron. Lasers 19 66(in Chinese)[郭金家, 闫召爱, 吴松华, 宋小全, 刘智深2005光电子激光 19 66]

    [14]

    Hua D X, Uchida M, Kobayashi T 2004 Opt. Lett. 29 1063

    [15]

    Hua D X, Uchida M, Kobayashi T 2005 Appl. Opt. 44 1305

    [16]

    Hua D X, Uchida M, Kobayashi T 2005 Appl. Opt. 44 1315

    [17]

    Liu D, Yang Y Y, Cheng Z T, Huang H L, Zhang B, Ling T, Shen Y B 2013 Opt. Express 21 13084

    [18]

    Cheng Z T, Liu D, Luo J, Yang Y Y, Wang Z F, Zhou Y D, Huang H L, Shen Y B 2014 Acta Opt. Sin. 34 0801003(in Chinese)[成中涛, 刘东, 罗敬, 杨甬英, 王治飞, 周雨迪, 黄寒璐, 沈亦兵2014光学学报 34 0801003]

    [19]

    Cheng Z T, Liu D, Luo J, Yang Y Y, Zhou Y D, Zhang Y P, Duan L L, Su L, Yang L M, Shen Y B, Wang K W, Bai J 2015 Chin. J. Lasers 23 12117(in Chinese)[成中涛, 刘东, 罗敬, 杨甬英, 周雨迪, 张与鹏, 段绿林, 苏林, 杨李茗, 沈亦兵, 汪凯巍, 白剑2015中国激光 23 12117]

    [20]

    Di H G, Zhang Z F, Hua H B, Zhang J Q, Hua D X, Wang Y F, He T Y 2017 Opt. Express 25 5068

  • [1]

    Shipley S T, Tracy D H, Eloranta E W, Trauger J T, Sroga J T, Roesler F L, Weinman J A 1983 Appl. Opt. 22 3716

    [2]

    Fokitis E, Fetfatzis P, Georgakopoulou A, Maltezos S, Aravantinos A 2009 Nucl. Phys. B 190 61

    [3]

    Foster M J, Bond R, Storey J, Thwaite C, Labandibar J Y, Bakalski I, Heliere A, Delev A, Rees D, Slimm M 2009 Opt. Express 17 3476

    [4]

    Zhang R W, Sun X J, Yan W, Zhao J, Liu L, Li Y, Zhang C L, Zhou J H 2014 Acta Phys. Sin. 63 140703(in Chinese)[张日伟, 孙学金, 严卫, 赵剑, 刘磊, 李岩, 张传亮, 周俊浩2014 63 140703]

    [5]

    Shen F H, Sun D S, Liu C L, Qiu C Q, Shu Z F 2013 Acta Phys. Sin. 62 220702(in Chinese)[沈法华, 孙东松, 刘成林, 仇成群, 舒志峰2013 62 220702]

    [6]

    Burton S P, Ferrare R A, Hostetler C A, Hair J W, Rogers R R, Obland M D, Butler C F, Cook A L, Harper D B, Froyd K D 2012 Atmos. Meas. Tech. 5 73

    [7]

    Cheng Z T, Liu D, Luo J, Yang Y Y, Zhou Y D, Zhang Y P, Duan L L, Su L, Yang L M, Shen Y B, Wang K W, Bai J 2015 Op. Express 23 12117

    [8]

    Shimizu H, Lee S A, She C Y 1983 Appl. Opt. 22 1373

    [9]

    She C Y, Alvarez Ⅱ R J, Caldwell L M, Krueger D A 1992 Opt. Lett. 17 541

    [10]

    Hair J W, Hostetler C A, Cook A L, Harper D B, Ferrare R A, Mack T L, Welch W, Izquierdo L R, Hovis F E 2008 Appl. Opt. 47 6734

    [11]

    Hair J W, Hostetler C A, Ferrare R A, Cook A L, Harper D B 2006 Proceedings of 23rd International Laser Radar Conference 1 411

    [12]

    Song X Q, Guo J J, Yan Z A, Zhang K L, Li Z G, Liu Z S 2008 Prog. Nat. Sci. 18 1009(in Chinese)[宋小全, 郭金家, 闫召爱, 张凯临, 李志刚, 刘智深2008自然科学进展 18 1009]

    [13]

    Guo J J, Yan Z A, Wu S H, Song X Q, Liu Z S 2005 J. Optoelectron. Lasers 19 66(in Chinese)[郭金家, 闫召爱, 吴松华, 宋小全, 刘智深2005光电子激光 19 66]

    [14]

    Hua D X, Uchida M, Kobayashi T 2004 Opt. Lett. 29 1063

    [15]

    Hua D X, Uchida M, Kobayashi T 2005 Appl. Opt. 44 1305

    [16]

    Hua D X, Uchida M, Kobayashi T 2005 Appl. Opt. 44 1315

    [17]

    Liu D, Yang Y Y, Cheng Z T, Huang H L, Zhang B, Ling T, Shen Y B 2013 Opt. Express 21 13084

    [18]

    Cheng Z T, Liu D, Luo J, Yang Y Y, Wang Z F, Zhou Y D, Huang H L, Shen Y B 2014 Acta Opt. Sin. 34 0801003(in Chinese)[成中涛, 刘东, 罗敬, 杨甬英, 王治飞, 周雨迪, 黄寒璐, 沈亦兵2014光学学报 34 0801003]

    [19]

    Cheng Z T, Liu D, Luo J, Yang Y Y, Zhou Y D, Zhang Y P, Duan L L, Su L, Yang L M, Shen Y B, Wang K W, Bai J 2015 Chin. J. Lasers 23 12117(in Chinese)[成中涛, 刘东, 罗敬, 杨甬英, 周雨迪, 张与鹏, 段绿林, 苏林, 杨李茗, 沈亦兵, 汪凯巍, 白剑2015中国激光 23 12117]

    [20]

    Di H G, Zhang Z F, Hua H B, Zhang J Q, Hua D X, Wang Y F, He T Y 2017 Opt. Express 25 5068

  • [1] Wang Ming-Jun, Wei Ya-Fei, Ke Xi-Zheng. Laser propagation transmission properties characteristics between airborne communication terminal and unmanned aerial vehicle target in complex atmospheric background. Acta Physica Sinica, 2019, 68(9): 094203. doi: 10.7498/aps.68.20182052
    [2] Liu Hou-Tong, Mao Min-Juan. An accurate inversion method of aerosol extinction coefficient about ground-based lidar without needing calibration. Acta Physica Sinica, 2019, 68(7): 074205. doi: 10.7498/aps.68.20181825
    [3] Du Jun, Yang Na, Li Jun-Ling, Qu Yan-Chen, Li Shi-Ming, Ding Yun-Hong, Li Rui. Improvement of phase modulation laser Doppler shift measurement method. Acta Physica Sinica, 2018, 67(6): 064204. doi: 10.7498/aps.67.20172049
    [4] Cai Qi-Sheng,  Huang Min,  Han Wei,  Liu Yi-Xuan,  Lu Xiang-Ning. Simulation of multiband imaging technology of large aperture spatial heterodyne imaging spectroscopy. Acta Physica Sinica, 2018, 67(23): 234205. doi: 10.7498/aps.67.20180943
    [5] Zhong Wen-Ting, Liu Jun, Hua Deng-Xin, Hou Hai-Yan, Yan Ke-Jun. Multi-wavelength light-emitting diode light source radar system and near-ground atmospheric aerosol detection. Acta Physica Sinica, 2018, 67(18): 184208. doi: 10.7498/aps.67.20180721
    [6] Wang Qian, Bi Yan-Meng, Yang Zhong-Dong. Simulation analysis of aerosol effect on shortwave infrared remote sensing detection of atmospheric CO2. Acta Physica Sinica, 2018, 67(3): 039202. doi: 10.7498/aps.67.20171993
    [7] Zheng Li-Juan, Cheng Tian-Hai, Wu Yu. Effect of aggregated black carbon aging on infrared absorption and longwave radiative forcing. Acta Physica Sinica, 2017, 66(16): 169201. doi: 10.7498/aps.66.169201
    [8] Wang Jian-Bo, Qian Jin, Liu Zhong-You, Lu Zu-Liang, Huang Lu, Yang Yan, Yin Cong, Li Tong-Bao. Methode of phase correction of displacement measurement using Fabry-Perot interferometer in calculable capacitor. Acta Physica Sinica, 2016, 65(11): 110601. doi: 10.7498/aps.65.110601
    [9] Rao Zhi-Min, Hua Deng-Xin, He Ting-Yao, Le Jing. Research and analysis on lidar performance with intrinsic fluorescence biological aerosol measurements. Acta Physica Sinica, 2016, 65(20): 200701. doi: 10.7498/aps.65.200701
    [10] Zhao Hu, Hua Deng-Xin, Mao Jian-Dong, Zhou Chun-Yan. Correction to near-range multiwavelength lidar optical parameter based on the measurements of particle size distribution. Acta Physica Sinica, 2015, 64(12): 124208. doi: 10.7498/aps.64.124208
    [11] Li Na, Jia Di, Zhao Hui-Jie, Su Yun, Li Tuo-Tuo. Error analysis and reconstruction for diffractive optic imaging spectrometer using the multiple iterations. Acta Physica Sinica, 2014, 63(17): 177801. doi: 10.7498/aps.63.177801
    [12] Tan Lin-Qiu, Hua Deng-Xin, Wang Li, Gao Fei, Di Hui-Ge. Wind velocity retrieval and field widening techniques of fringe-imaging Mach-Zehnder interferometer for Doppler lidar. Acta Physica Sinica, 2014, 63(22): 224205. doi: 10.7498/aps.63.224205
    [13] Di Hui-Ge, Hou Xiao-Long, Zhao Hu, Yan Lei-Jie, Wei Xin, Zhao Huan, Hua Deng-Xin. Detections and analyses of aerosol optical properties under different weather conditions using multi-wavelength Mie lidar. Acta Physica Sinica, 2014, 63(24): 244206. doi: 10.7498/aps.63.244206
    [14] Wang Hong-Xia, Zhu You-Zhang, Tian Tao, Li Ai-Jun. Characteristics of laser transmission in different types of aerosols. Acta Physica Sinica, 2013, 62(2): 024214. doi: 10.7498/aps.62.024214
    [15] Du Jun, Zhao Wei-Jiang, Qu Yan-Chen, Chen Zhen-Lei, Geng Li-Jie. Laser Doppler shift measuring method based on phase modulater and Fabry-Perot interferometer. Acta Physica Sinica, 2013, 62(18): 184206. doi: 10.7498/aps.62.184206
    [16] Bai Lu, Tang Shuang-Qing, Wu Zhen-Sen, Xie Pin-Hua, Wang Shi-Mei. Study of random sample scattering phase functions of polydisperse atmospheric aerosol in ultraviolet band. Acta Physica Sinica, 2010, 59(3): 1749-1755. doi: 10.7498/aps.59.1749
    [17] Wang Min, Hu Shun-Xing, Fang Xin, Wang Shao-Lin, Cao Kai-Fa, Zhao Pei-Tao, Fan Guang-Qiang, Wang Ying-Jian. Precise correction for the troposphere target location error based on lidar. Acta Physica Sinica, 2009, 58(7): 5091-5097. doi: 10.7498/aps.58.5091
    [18] Zhang Gai-Xia, Zhao Yue-Feng, Zhang Yin-Chao, Zhao Pei-Tao. A lidar system for monitoring planetary boundary layer aerosol in daytime. Acta Physica Sinica, 2008, 57(11): 7390-7395. doi: 10.7498/aps.57.7390
    [19] Hong Guang-Lie, Zhang Yin-Chao, Zhao Yue-Feng, Shao Shi-Sheng, Tan Kun, Hu Huan-Ling. Raman lidar for profiling atmospheric CO2. Acta Physica Sinica, 2006, 55(2): 983-987. doi: 10.7498/aps.55.983
    [20] Si Fu-Qi, Liu Jian-Guo, Xie Pin-Hua, Zhang Yu-Jun, Dou Ke, Liu Wen-Qing. Determination of size distribution of atmospheric aerosol by DOAS. Acta Physica Sinica, 2006, 55(6): 3165-3169. doi: 10.7498/aps.55.3165
Metrics
  • Abstract views:  6754
  • PDF Downloads:  219
  • Cited By: 0
Publishing process
  • Received Date:  23 March 2017
  • Accepted Date:  05 May 2017
  • Published Online:  05 September 2017

/

返回文章
返回
Baidu
map