-
Over the last decades, manipulating polarization has received much attention due to its wide applications in science and technology. In this paper, a half-waveplate based on a field transformation (FT) method is proposed and investigated in order to convert polarization, which works at millimeter-wave band with a wide incident angle and broad working bandwidth.Inspired by the FT method, we confine our attention to a two-dimensional (2D) case of in-plane wave propagation on the x-y plane, with both material properties and fields unchanged in the z direction. The fields are denoted with a subscript “(0)” in the virtual space. Then a series of theoretical calculations is analyzed in detail. Under the guidance of theoretical analysis, it is shown that the main job for realizing this half-wavepalate is to obtain a material with specific permittivity and permeability. The proposed waveplate is composed of periodically arranged two dielectric layers each with sub-wavelength in height. By using the effective medium theory, the effective electromagnetic (EM) parameters of the waveplate can be tuned by manipulating the heights of the two dielectric layers. Among them one layer is a material with a permittivity of 10 and height of 0.68 mm, and another layer material has a permittivity of 1, and height of 5 mm. We alternately arrange the two materials along one direction periodically to obtain a waveplate for realizing the TE-to-TM and LCP-to-RCP conversion. The thickness of whole waveplate is 5.5 mm. A broadband EM half-waveplate is achieved in millimeter-wave region, which possesses a nearly 90% conversion efficiency across the frequency band from 24 GHz to 37 GHz. At the same time, we also find that when the incident angle gradually increases from 0° to 60°, the performances of polarization conversion efficiency and working bandwidth are still good. For the incident angle of 60°, a 3-dB bandwidth over 26-33 GHz is still achieved. The performance of the waveplate is verified through both full-wave simulation and experimental measurement, which are in good agreement with each other. Meanwhile, three-dimensional (3D) printing technology makes the sample fabricated more easily. Another advantage of our design is that the 3D printing technology can be used to carry out the experimental fabrication, which may pave a new way to manufacturing more microwave devices.
-
Keywords:
- half-waveplate /
- field transformation /
- broadband
[1] Elston S J, Brown B, Preist T W, Sambles J R 1991 Phys. Rev. B 44 3483
[2] Born M, Wolf E 1999 Principles of Optics (Cambridge: Cambridge University Press) pp604-607
[3] Gansel J K 2009 Science 325 1513
[4] Zhao Y, Belkin M, Alu A 2012 Nat. Commun. 3 870
[5] Hooper I R, Sambles J R 2002 Opt. Lett. 27 2152
[6] Wu L 2014 Appl. Phys. A 116 014
[7] Hallam B T, Hooper I R, Sambles J R 2004 Appl. Phys. Lett. 84 849
[8] Hao J 2006 Phys. Rev. Lett. 99 063908
[9] Ye Y, He S 2010 Appl. Phys. Lett. 96 203501
[10] Zhao Y, Belkin M A, Alu A 2012 Nat. Commun 3 870
[11] Dietlein C, Luukanen A, Popovic Z, Grossman E A 2007 IEEE Trans. Antennas Propag 55 1804
[12] Doumanis E 2012 IEEE Trans. Antennas Propag 60 212
[13] Zhu H, Cheung S, Chung K, Yuk T 2013 IEEE Trans. Antennas Propag 61 4615
[14] Wood B, Pendry J B, Tsai D P 2006 Phys. Rev. B 74 115116
[15] Liu Y C, Yuan J, Yin G, He S, Ma Y G 2015 Appl. Phys. Lett 107 011902
[16] Zhang B, Luo Y, Liu X, Barbastathis G 2011 Phys. Rev. Lett. 106 033901
[17] Gharghi M, Gladden C, Zentgraf T, Liu Y, Yin X, Valentine J, Zhang X 2011 Nano Lett. 11 2825
[18] Alu A, Engheta 2008 Phys. Rev. Lett. 100 113901
[19] Li J, Pendry J B 2008 Phys. Rev. Lett. 101 203901
[20] Ergin T, Stenger N, Brenner P, Pendry J B, Wegener M 2010 Science 328 337
[21] Ma H F, Cui T J 2010 Nat. Commun 1 21
[22] Zhang B L, Luo Y, Liu X G, Barbastathis G 2011 Phys. Rev. Lett. 106 033901
[23] Luo Y, Chen H, Zhang J, Ran L, Kong J A 2008 Phys. Rev. B 77 125127
[24] Chen H, Hou B, Chen S, Ao X, Wen W, Chan C T 2009 Phys. Rev. Lett. 102 183903
[25] Chen H Y, Chan C T 2007 Appl. Phys. Lett. 90 241105
[26] Kwon D H, Werner D H 2008 Opt. Express 16 18731
[27] Lai Y, Ng J, Chen H Y, Han D Z, Xiao J J, Zhang Z Q, Chan C T 2009 Phys. Rev. Lett. 102 253902
[28] Li C, Meng X, Liu X, Li F, Fang G, Chen H, Chan C T 2010 Phys. Rev. Lett. 105 233906
[29] Liu F, Liang Z X, Li J S 2013 Physical Review Letters 111 033901
[30] Zhao J M, Zhang L H, Li J S, Feng Y J, Dyke A, SajadHaq, Hao Y 2015 Sci. Reports 5 17532
-
[1] Elston S J, Brown B, Preist T W, Sambles J R 1991 Phys. Rev. B 44 3483
[2] Born M, Wolf E 1999 Principles of Optics (Cambridge: Cambridge University Press) pp604-607
[3] Gansel J K 2009 Science 325 1513
[4] Zhao Y, Belkin M, Alu A 2012 Nat. Commun. 3 870
[5] Hooper I R, Sambles J R 2002 Opt. Lett. 27 2152
[6] Wu L 2014 Appl. Phys. A 116 014
[7] Hallam B T, Hooper I R, Sambles J R 2004 Appl. Phys. Lett. 84 849
[8] Hao J 2006 Phys. Rev. Lett. 99 063908
[9] Ye Y, He S 2010 Appl. Phys. Lett. 96 203501
[10] Zhao Y, Belkin M A, Alu A 2012 Nat. Commun 3 870
[11] Dietlein C, Luukanen A, Popovic Z, Grossman E A 2007 IEEE Trans. Antennas Propag 55 1804
[12] Doumanis E 2012 IEEE Trans. Antennas Propag 60 212
[13] Zhu H, Cheung S, Chung K, Yuk T 2013 IEEE Trans. Antennas Propag 61 4615
[14] Wood B, Pendry J B, Tsai D P 2006 Phys. Rev. B 74 115116
[15] Liu Y C, Yuan J, Yin G, He S, Ma Y G 2015 Appl. Phys. Lett 107 011902
[16] Zhang B, Luo Y, Liu X, Barbastathis G 2011 Phys. Rev. Lett. 106 033901
[17] Gharghi M, Gladden C, Zentgraf T, Liu Y, Yin X, Valentine J, Zhang X 2011 Nano Lett. 11 2825
[18] Alu A, Engheta 2008 Phys. Rev. Lett. 100 113901
[19] Li J, Pendry J B 2008 Phys. Rev. Lett. 101 203901
[20] Ergin T, Stenger N, Brenner P, Pendry J B, Wegener M 2010 Science 328 337
[21] Ma H F, Cui T J 2010 Nat. Commun 1 21
[22] Zhang B L, Luo Y, Liu X G, Barbastathis G 2011 Phys. Rev. Lett. 106 033901
[23] Luo Y, Chen H, Zhang J, Ran L, Kong J A 2008 Phys. Rev. B 77 125127
[24] Chen H, Hou B, Chen S, Ao X, Wen W, Chan C T 2009 Phys. Rev. Lett. 102 183903
[25] Chen H Y, Chan C T 2007 Appl. Phys. Lett. 90 241105
[26] Kwon D H, Werner D H 2008 Opt. Express 16 18731
[27] Lai Y, Ng J, Chen H Y, Han D Z, Xiao J J, Zhang Z Q, Chan C T 2009 Phys. Rev. Lett. 102 253902
[28] Li C, Meng X, Liu X, Li F, Fang G, Chen H, Chan C T 2010 Phys. Rev. Lett. 105 233906
[29] Liu F, Liang Z X, Li J S 2013 Physical Review Letters 111 033901
[30] Zhao J M, Zhang L H, Li J S, Feng Y J, Dyke A, SajadHaq, Hao Y 2015 Sci. Reports 5 17532
Catalog
Metrics
- Abstract views: 6359
- PDF Downloads: 321
- Cited By: 0