Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Preparation and performance study of Er2O3 film selective thermal emitter

Liu Shi-Yan Yao Bo Tan Yong-Sheng Xu Hai-Tao Ji Ting Fang Ze-Bo

Citation:

Preparation and performance study of Er2O3 film selective thermal emitter

Liu Shi-Yan, Yao Bo, Tan Yong-Sheng, Xu Hai-Tao, Ji Ting, Fang Ze-Bo
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Solar thermophotovoltaic (STPV) generator is a popular energy converter due to providing low noise, low thermal mechanical stress and portability. It has the ability to exceed the efficiency of pure solar photovoltaic system. An idealized STPV generator is a reversible heat-engine, offering a theoretical efficiency of over 80%, but the actual conversion efficiency of STPV generator is still low due to the mistuned spectral property between the thermal selective emitter and the TPV cell. One key issue in developing the STPV generator with high performance is the spectral matching between the thermal radiation spectrum of radiator and the spectral response of photovoltaic cell in visible and near-infrared region, which usually lies between the visible and the near-infrared region. High-temperature spectral emissivity of rare earth oxide is of special interest, because the radiation has a narrow band of wavelengths in the near infrared and infrared region from 900 to 3000 nm. In this work, the thermal-selective film Er2O3 emitter is fabricated by post-oxidation of Er film deposited on Si substrate through using electron-beam gun evaporation. Based on the X-ray diffraction results, the Er2O3 film is of cubic phase structure and well-crystallized when the oxidation temperature is 700℃, and the Si substrate has no obvious influence on the crystal structure of Er2O3 film. According to the X-ray photoelectron spectroscopy results of the Er2O3 film after thermal oxidation at 700℃, the atomic ratio of Er/O is stoichiometric. In order to obtain the selective emission characteristic of the Er2O3 film, a measurement system is designed. The system consists of two major portions, i.e., one is a near infrared spectrometer purchased from Ocean Optics, the other is a high-temperature emission characteristic tester which can provide oxyhydrogen flame to heat the sample by using an electronic impulse ignition to torch the hydrogen-oxygen mixture. The oxyhydrogen flame passes through the nozzle and sprays vertically on the surface of the thermal-selective emitter sample. The facula of the oxyhydrogen flame convergence is very small (facula diameter:~0.8 cm), and the highest temperature achieved is about 2500℃. The measurement condition of selective emission performance of the Er2O3 film emitter coincides with the application characteristic of STPV generator. The emission performance result of the film emitter at 700℃ shows a typical gray-body emission characteristic. The measurements carried out at 900 and 1100℃ show that the Er2O3 film has a distinct emittance spectrum at 1550 nm corresponding to Er3+, and the intensity of the selective emission peak strengthens with the measuring temperature or film thickness increasing. The thermal-selective film Er2O3 emitter is found to have emission spectrum suitable for efficient matching with the infrared response of GaSb photovoltaic cell.
      Corresponding author: Fang Ze-Bo, csfzb@usx.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61405118, 61504082), the Natural Science Foundation of Zhejiang Province, China (Grant Nos. LY15A040001, LQ16F040001), the Natural Science Foundation of Shanxi Province, China (Grant No. 201601D021051), and the Scientific and Technical Plan Project of Shaoxing City, China (Grant No. 2015B70009).
    [1]

    Xiong C, Yao R H, Geng K W 2011 Chin. Phys. B 20 57302

    [2]

    Yao X, Ding Y L, Zhang X D, Zhao Y 2015 Acta Phys. Sin. 64 038805 (in Chinese) [姚鑫, 丁艳丽, 张晓丹, 赵颖 2015 64 038805]

    [3]

    Peng H L, Zhang W, Sun L J, Ma S D, Shi Y, Liang H W, Zhang Y J, Zheng W H 2014 Acta Phys. Sin. 63 178801 (in Chinese) [彭红玲, 张玮, 孙利杰, 马绍栋, 石岩, 渠红伟, 张冶金, 郑婉华 2014 63 178801]

    [4]

    Seyf H R, Henry A 2016 Energ. Environ. Sci. 9 2654

    [5]

    Daneshvar H, Prinja R, Kherani N P 2015 Appl. Energ. 159 560

    [6]

    Karalis A, Joannopoulos J D 2015 Appl. Phys. Lett. 107 141108

    [7]

    Zhou Z G, Sakr E, Sun Y B, Bermel P 2016 Nanophotonics 5 1

    [8]

    Wang H C, Wen L, Song S C, Hu X, Xu G Q 2015 Photon. Res. 3 329

    [9]

    Zhou Z G, Yehia O, Bermel P 2016 J. Nanophoton. 10 016014

    [10]

    Diso D, Licciulli A, Bianco A, Lomascolo M, Leo G, Mazzer M, Tundo S, Torsello G, Maffezzoli A 2003 Mater. Sci. Eng. B 98 144

    [11]

    Guazzoni G E 1972 Appl. Spectrosc. 26 60

    [12]

    Fraas L M, Girard G R, Avery J E, Arau B A, Sundaram V S 1989 J. Appl. Phys. 66 3866

    [13]

    Licciulli A, Maffezzoli A, Diso D, Tundo S, Rella M, Torsello G, Mazzer M 2003 J. Sol-Gel Sci. Technol. 26 1119

    [14]

    Tobler W J, Durisch W 2008 Appl. Energ. 85 483

    [15]

    Chubb D L, Good B S, Chen Z 1997 AIP Conf. Proc. 401 293

    [16]

    Chubb D L, Lowe R A 1993 J. Appl. Phys. 74 5687

    [17]

    Narayanaswamy A, Canetta C 2014 Appl. Phys. Lett. 104 183107

    [18]

    Tong J K, Hsu W C, Huang Y, Boriskina S V, Chen G 2015 Sci. Rep. 5 10661

    [19]

    Mikhelashvili V, Eisenstein G, Edelmann F 2002 Appl. Phys. Lett. 80 2156

    [20]

    Pam T M, Chen C L, Yeh W W, Hou S J 2006 Appl. Phys. Lett. 89 222912

    [21]

    Dakhel A A 2006 Mater. Chem. Phys. 100 366

    [22]

    Chen S, Zhu Y Y, Wu R, Wu Y Q, Fan Y L, Jiang Z M 2007 J. Appl. Phys. 101 064106

    [23]

    Losurdo M, Giangregorio M M, Capezzuto P, Bruno G, Malandrino G, Fragalà I L, Armelao L, Barreca D, Tondello E 2008 J. Electrochem. Soc. 155 44

    [24]

    Pan T M, Shu W H, Hong J L 2007 Appl. Phys. Lett. 90 222906

  • [1]

    Xiong C, Yao R H, Geng K W 2011 Chin. Phys. B 20 57302

    [2]

    Yao X, Ding Y L, Zhang X D, Zhao Y 2015 Acta Phys. Sin. 64 038805 (in Chinese) [姚鑫, 丁艳丽, 张晓丹, 赵颖 2015 64 038805]

    [3]

    Peng H L, Zhang W, Sun L J, Ma S D, Shi Y, Liang H W, Zhang Y J, Zheng W H 2014 Acta Phys. Sin. 63 178801 (in Chinese) [彭红玲, 张玮, 孙利杰, 马绍栋, 石岩, 渠红伟, 张冶金, 郑婉华 2014 63 178801]

    [4]

    Seyf H R, Henry A 2016 Energ. Environ. Sci. 9 2654

    [5]

    Daneshvar H, Prinja R, Kherani N P 2015 Appl. Energ. 159 560

    [6]

    Karalis A, Joannopoulos J D 2015 Appl. Phys. Lett. 107 141108

    [7]

    Zhou Z G, Sakr E, Sun Y B, Bermel P 2016 Nanophotonics 5 1

    [8]

    Wang H C, Wen L, Song S C, Hu X, Xu G Q 2015 Photon. Res. 3 329

    [9]

    Zhou Z G, Yehia O, Bermel P 2016 J. Nanophoton. 10 016014

    [10]

    Diso D, Licciulli A, Bianco A, Lomascolo M, Leo G, Mazzer M, Tundo S, Torsello G, Maffezzoli A 2003 Mater. Sci. Eng. B 98 144

    [11]

    Guazzoni G E 1972 Appl. Spectrosc. 26 60

    [12]

    Fraas L M, Girard G R, Avery J E, Arau B A, Sundaram V S 1989 J. Appl. Phys. 66 3866

    [13]

    Licciulli A, Maffezzoli A, Diso D, Tundo S, Rella M, Torsello G, Mazzer M 2003 J. Sol-Gel Sci. Technol. 26 1119

    [14]

    Tobler W J, Durisch W 2008 Appl. Energ. 85 483

    [15]

    Chubb D L, Good B S, Chen Z 1997 AIP Conf. Proc. 401 293

    [16]

    Chubb D L, Lowe R A 1993 J. Appl. Phys. 74 5687

    [17]

    Narayanaswamy A, Canetta C 2014 Appl. Phys. Lett. 104 183107

    [18]

    Tong J K, Hsu W C, Huang Y, Boriskina S V, Chen G 2015 Sci. Rep. 5 10661

    [19]

    Mikhelashvili V, Eisenstein G, Edelmann F 2002 Appl. Phys. Lett. 80 2156

    [20]

    Pam T M, Chen C L, Yeh W W, Hou S J 2006 Appl. Phys. Lett. 89 222912

    [21]

    Dakhel A A 2006 Mater. Chem. Phys. 100 366

    [22]

    Chen S, Zhu Y Y, Wu R, Wu Y Q, Fan Y L, Jiang Z M 2007 J. Appl. Phys. 101 064106

    [23]

    Losurdo M, Giangregorio M M, Capezzuto P, Bruno G, Malandrino G, Fragalà I L, Armelao L, Barreca D, Tondello E 2008 J. Electrochem. Soc. 155 44

    [24]

    Pan T M, Shu W H, Hong J L 2007 Appl. Phys. Lett. 90 222906

  • [1] Xiong Jia-Cheng, Huang Zhe-Qun, Zhang Heng, Wang Qi-Xiang, Cui Ke-Hang. Spectral regulation in thermophotovoltaic devices. Acta Physica Sinica, 2024, 73(14): 144402. doi: 10.7498/aps.73.20240629
    [2] Zhang Ao, Zhang Chun-Xiu, Zhang Chun-Mei, Tian Yi-Min, Yan Jun, Meng Tao. Effects of CH3NH3 polymer formation on performance of organic-inorganic hybrid perovskite solar cell. Acta Physica Sinica, 2021, 70(16): 168801. doi: 10.7498/aps.70.20210353
    [3] Sun Yong-Feng, Xu Liang, Shen Xian-Chun, Wang Yu-Hao, Xu Han-Yang, Liu Wen-Qing. Calibration method of instrument line shape for infrared radiometer. Acta Physica Sinica, 2021, 70(14): 140701. doi: 10.7498/aps.70.20210302
    [4] Zhang Ao, Zhang Chun-Xiu, Chen Yun-Lin, Zhang Chun-Mei, Meng Tao. Theoretical study of photovoltaic performance for inverted halide perovskite solar cells. Acta Physica Sinica, 2020, 69(11): 118801. doi: 10.7498/aps.69.20200089
    [5] Geng Jun-Xian, Li Shao-Qiang, Wang Shi-Qi, Huang Chun, Lü Yun-Jie, Hu Rui, Qu Jun-Le, Liu Li-Wei. Stimulating Ca2+ photoactivation of nerve cells by near-infrared light. Acta Physica Sinica, 2020, 69(15): 158701. doi: 10.7498/aps.69.20200489
    [6] Yu Hai-Tong, Liu Dong, Yang Zhen, Duan Yuan-Yuan. Surface structure for manipulating the near-field spectral radiative transfer of thermophotovoltaics. Acta Physica Sinica, 2018, 67(2): 024209. doi: 10.7498/aps.67.20171531
    [7] Xiao Biao, Zhang Min-Li, Wang Hong-Bo, Liu Ji-Yan. High performence visble-near infrared photovoltaic detector based on narrow bandgap polymer. Acta Physica Sinica, 2017, 66(22): 228501. doi: 10.7498/aps.66.228501
    [8] Cao Yu, Xue Lei, Zhou Jing, Wang Yi-Jun, Ni Jian, Zhang Jian-Jun. Developments of c-Si1-xGex:H thin films as near-infrared absorber for thin film silicon solar cells. Acta Physica Sinica, 2016, 65(14): 146801. doi: 10.7498/aps.65.146801
    [9] Liang Zhao-Ming, Wu Yong-Gang, Xia Zi-Huan, Zhou Jian, Qin Xue-Fei. Influence of front and back grating period on light trapping of dual-grating structure thin film solar cell. Acta Physica Sinica, 2014, 63(19): 198801. doi: 10.7498/aps.63.198801
    [10] Liu Jun-Yan, Qin Lei, Song Peng, Gong Jin-Long, Wang Yang, A. Mandelis. Infrared radiation dynamic response and parametric analysis for silicon solar cell using photocarrier radiometry. Acta Physica Sinica, 2014, 63(22): 227801. doi: 10.7498/aps.63.227801
    [11] Geng Jun-Jie, Zhang Jun, Zhang Yi, Ding Jian-Jun, Sun Song, Luo Zhen-Lin, Bao Jun, Gao Chen. Simulation and optimization of the cascaded luminescent solar concentrator photovoltaic system. Acta Physica Sinica, 2012, 61(3): 034201. doi: 10.7498/aps.61.034201
    [12] Liu Li-Sha, Lü Shu-Chen, Sun Jiang-Ting. Spectroscopic properties and up-conversion luminescence Er3+/Yb3+ co-doped TeO2-WO3-Bi2O3 glass. Acta Physica Sinica, 2010, 59(9): 6637-6641. doi: 10.7498/aps.59.6637
    [13] Chen Xiao-Bo, Yang Guo-Jian, Zhang Chun-Lin, Li Yong-Liang, Liao Hong-Bo, Zhang Yun-Zhi, Chen Luan, Wang Ya-Fei. Infrared quantum-cutting analysis of Er0.3Gd0.7VO4 crystal for solar cell application. Acta Physica Sinica, 2010, 59(11): 8191-8199. doi: 10.7498/aps.59.8191
    [14] Yang Si-Hua, Yin Guang-Zhi. Photoacoustic angiography for mouse brain cortex using near-infrared light. Acta Physica Sinica, 2009, 58(7): 4760-4765. doi: 10.7498/aps.58.4760
    [15] Tan Na, Duan Shu-Qing, Zhang Qing-Yu. Influence of annealing temperature on the luminescence of Er/Yb co-doped Al2O3 films. Acta Physica Sinica, 2005, 54(9): 4433-4438. doi: 10.7498/aps.54.4433
    [16] ZHANG XIONG, XIE GUANG-ZHONG, ZHAO GANG, MA LI, YI JI-DONG, BAI JIN-MING. STUDY OF GAMMA-RAY AND NEAR-INFRARED EMISSION OF GAMMA-RAY-LOUD BLAZARS OBJECT. Acta Physica Sinica, 2001, 50(2): 354-360. doi: 10.7498/aps.50.354
    [17] . Acta Physica Sinica, 2000, 49(2): 371-374. doi: 10.7498/aps.49.371
    [18] MAO NIAN-XIN, HUANG YE-XIAO, LU WEI, YE HONG-JUAN, SHEN XUE-CHU, HU ZHI-HONG, LUO AN-XIANG. FAR-INFRARED SPECTRA OF NATURALLY OCCURRING FeS2(Pyrite). Acta Physica Sinica, 1993, 42(10): 1712-1718. doi: 10.7498/aps.42.1712
    [19] YE HONG-JUAN, YU ZHI-YI, LU WEI, JI HUA-MEI, CHEN JIAN-XIANG, LI GUANG-YUAN, CAI PEI-XIN, GU WEI-FANG. INFRARED AND FAR-INFRARED SPECTRA OF THE OXIDE SUPERCONDUCTORS TixY1-xBa2Cu3O7-δ. Acta Physica Sinica, 1989, 38(4): 586-592. doi: 10.7498/aps.38.586
    [20] ZHENG JIAN-SHENG. MEASUREMENT OF MINUTE RADIOMETRIC QUANTITIES IN THE SPECTRAL RANGE FROM VISIBLE TO NEAR INFRA-RED. Acta Physica Sinica, 1980, 29(3): 286-295. doi: 10.7498/aps.29.286
Metrics
  • Abstract views:  5505
  • PDF Downloads:  349
  • Cited By: 0
Publishing process
  • Received Date:  05 July 2017
  • Accepted Date:  08 September 2017
  • Published Online:  05 December 2017

/

返回文章
返回
Baidu
map