搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用于热光伏系统的近场辐射光谱控制表面结构

于海童 刘东 杨震 段远源

引用本文:
Citation:

用于热光伏系统的近场辐射光谱控制表面结构

于海童, 刘东, 杨震, 段远源

Surface structure for manipulating the near-field spectral radiative transfer of thermophotovoltaics

Yu Hai-Tong, Liu Dong, Yang Zhen, Duan Yuan-Yuan
PDF
导出引用
  • 为提升近场热光伏发电系统的能源转换效率和发电功率,设计了Ⅲ-V族半导体表面的矩形光栅结构,以实现从热发射器到热光伏电池的近场辐射热流选择性调制.使用在近红外波段具有表面等离子体激元特性的掺杂氧化锌作为热发射器,在GaSb热光伏电池表面添加亚微米二维光栅结构,在近场间距下形成与表面波耦合的陷光效应,由此有选择性地增强了电池能带内的光谱辐射热流.有别于以往类似研究中常用的等效近似方法,开展了时域有限差分方法模拟,能够严格考虑周期性结构细节,结合以涨落耗散理论为基础的Langevin方法,直接计算了复杂结构参与的近场辐射传热问题,以此揭示表面结构影响近场辐射传热的物理机理.结果显示使用带表面结构的薄膜GaSb电池,可使辐射热流的光谱峰值达到同温度远场黑体辐射源情况下的2.84倍,且热流增益区集中在波长略短于电池能带的窄波段区间,适应高效率、高功率热光伏系统对辐射传热设计的要求.
    To improve the efficiency and output power of the nano-gap thermophotovoltaic (TPV) power generation system, surface rectangular grating structures are added to the top surface of the group Ⅲ-V semiconductor cell to control the spectrum of near-field radiative transfer. Doped zinc oxide that supports surface waves at near-infrared wavelengths is selected as the TPV emitter. When paired with GaSb grating structures, the surface plasmon polariton excited by the emitter and the light trapping effect by the grating tunnels will be coupled, which results in a significantly and selectively enhanced near-field radiative heat flux within a narrow spectral region above the cell bandgap, thereby fulfilling the design purpose. This physical mechanism is explained by a direct finite-difference time-domain (FDTD) simulation based on the Langevin approach. The material volume meshgrids filled with random dipole sources can act as the thermal emission source and the radiative heat flux is calculated by solving the Maxwell equations numerically. The spectral results show that adding rectangular grating structures to GaSb not only increases radiative transfer in the expected wavelength region over the unstructured case, resulting in a heat flux surpassing that of a far-field blackbody source at the same temperature, but also suppresses the unwanted long-wavelength heat flux that causes radiative loss and cell heating. With a vacuum gap of 200 nm between the emitter and the cell, using a bulk GaSb cell with rectangular gratings can double the spectral flux of the blackbody emitter case, and using an ultrathin GaSb cell with surface structures and back reflectors further increases this ratio to 2.84 due to the total internal reflection controlled by the cell thickness. The amplitude and wavelength of the spectral peak are controlled by the grating size parameters. Low filling ratio gratings with lower-aspect-ratio grating channels generally have sharper enhancement peaks but lower total radiative heat flux, while high filling ratio structures with higher-aspect-ratio channels have better heat flux improvement but might also result in lower conversion efficiency due to the broader spectrum. The rigorous approach reveals the detailed physical mechanism that is otherwise unseen with effective medium approaches for inhomogeneous structures or the Derjaguin proximity approximation. Overall the results of this study enable an enhancement of near-field radiative heat flux limited within a narrow wavelength range shorter than the cell bandgap, offering practical benefit to the application of TPV power generation with higher feasible power and conversion efficiency.
      通信作者: 段远源, yyduan@tsinghua.edu.cn
    • 基金项目: 国家自然科学基金(批准号:51621062,51606099)资助的课题.
      Corresponding author: Duan Yuan-Yuan, yyduan@tsinghua.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51621062, 51606099).
    [1]

    Liu D, Yu H T, Yang Z, Duan Y Y 2015 J. Eng. Thermophys. 36 698 (in Chinese)[刘东, 于海童, 杨震, 段远源 2015 工程热 36 698]

    [2]

    Coutts T J 1999 Renewable and Sustainable Energy Reviews 3 77

    [3]

    Lenert A, Bierman D M, Nam Y, Chan W R, Celanovi C I, Soljačić M, Wang E N 2014 Nat. Nanotechnol. 9 126

    [4]

    Basu S, Chen Y, Zhang Z M 2007 Int. J. Energ. Res. 31 689

    [5]

    Hanamura K, Fukai H, Srinivasan E, Asano M, Masuhara T 2011 ASME/JSME 8th Thermal Engineering Joint Conference Hawaii, USA, March 2011

    [6]

    Geng C, Zheng Y, Zhang Y Z, Yan H 2016 Acta Phys. Sin. 65 070201 (in Chinese)[耿超, 郑义, 张永哲, 严辉 2016 65 070201]

    [7]

    Ijiro T, Yamada N 2015 Appl. Phys. Lett. 106 23103

    [8]

    Chalabi H, Hasman E, Brongersma M L 2015 Phys. Rev. B 91 14302

    [9]

    Molesky S, Jacob Z 2015 Phys. Rev. B 91 205435

    [10]

    Lu D, Das A, Park W 2017 Opt. Express 25 12999

    [11]

    Zhang Z M 2007 Nano/Microscale Heat Transfer (New York: McGraw-Hill) p377

    [12]

    Francoeur M, Meng M P, Vaillon R 2009 J. Quant. Spectr. Radiat. Transfer 110 2002

    [13]

    Li J Y, Xuan Y M, Li Q, Han Y G 2013 J. Eng. Thermophys. 34 1548 (in Chinese)[李佳玉, 宣益民, 李强, 韩玉阁 2013 工程热 34 1548]

    [14]

    Wu H H, Huang Y, Zhu K Y 2016 J. Eng. Thermophys. 37 597 (in Chinese)[吴会海, 黄勇, 朱克勇 2016 工程热 37 597]

    [15]

    Zhu K Y, Huang Y, Wu H H 2016 J. Eng. Thermophys. 37 2393 (in Chinese)[朱克勇, 黄勇, 吴会海 2016 工程热 37 2393]

    [16]

    Vongsoasup N, Francoeur M, Hanamura K 2017 Int. J. Heat Mass Transfer 115 326

    [17]

    Chang J Y, Yang Y, Wang L 2015 Int. J. Heat Mass Transfer 87 237

    [18]

    Zhang R Z, Zhang Z M 2017 J. Quant. Spectr. Radiat. Transfer 197 132

    [19]

    Yu H T, Liu D, Duan Y Y, Zhen Y 2015 Int. J. Heat Mass Transfer 87 303

    [20]

    Luo C, Narayanaswamy A, Chen G, Joannopoulos J D 2004 Phys. Rev. Lett. 93 213905

    [21]

    Lussange J, Gurout R, Rosa F S S, Greffet J J, Lambrecht A, Reynaud S 2012 Phys. Rev. B 86 85432

    [22]

    Bai Y, Jiang Y, Liu L 2015 J. Quant. Spectr. Radiat. Transfer 158 36

    [23]

    Kanamori Y, Kobayashi K, Yugami H, Hane K 2003 Jpn. J. Appl. Phys. 42 4020

    [24]

    Bernardi M P, Dupr O, Blandre E, Chapuis P O, Vaillon R, Francoeur M 2015 Sci. Rep. 5 11626

    [25]

    Didari A, Meng M P 2017 J. Quant. Spectr. Radiat. Transfer 197 95

    [26]

    Datas A, Hirashima D, Hanamura K 2013 J. Therm. Sci. Tech. 8 91

    [27]

    Kim J, Naik G V, Emani N K, Guler U, Boltasseva A 2013 IEEE J. Sel. Top. Quant. 19 4601907

    [28]

    Djuriić A B, Li E H, Raki C D, Majewski M L 2000 Appl. Phys. A 70 29

    [29]

    Yang Y, Wang L 2016 Phys. Rev. Lett. 117 44301

    [30]

    Wei B, Li X Y, Wang F, Ge D B 2009 Acta Phys. Sin. 58 6174 (in Chinese)[魏兵, 李小勇, 王飞, 葛德彪 2009 58 6174]

    [31]

    Yu H, Liu D, Yang Z, Duan Y 2017 Sci. Rep. 7 1026

    [32]

    Kim J, Hwang J, Song K, Kim N, Shin J C, Lee J 2016 Appl. Phys. Lett. 108 253101

  • [1]

    Liu D, Yu H T, Yang Z, Duan Y Y 2015 J. Eng. Thermophys. 36 698 (in Chinese)[刘东, 于海童, 杨震, 段远源 2015 工程热 36 698]

    [2]

    Coutts T J 1999 Renewable and Sustainable Energy Reviews 3 77

    [3]

    Lenert A, Bierman D M, Nam Y, Chan W R, Celanovi C I, Soljačić M, Wang E N 2014 Nat. Nanotechnol. 9 126

    [4]

    Basu S, Chen Y, Zhang Z M 2007 Int. J. Energ. Res. 31 689

    [5]

    Hanamura K, Fukai H, Srinivasan E, Asano M, Masuhara T 2011 ASME/JSME 8th Thermal Engineering Joint Conference Hawaii, USA, March 2011

    [6]

    Geng C, Zheng Y, Zhang Y Z, Yan H 2016 Acta Phys. Sin. 65 070201 (in Chinese)[耿超, 郑义, 张永哲, 严辉 2016 65 070201]

    [7]

    Ijiro T, Yamada N 2015 Appl. Phys. Lett. 106 23103

    [8]

    Chalabi H, Hasman E, Brongersma M L 2015 Phys. Rev. B 91 14302

    [9]

    Molesky S, Jacob Z 2015 Phys. Rev. B 91 205435

    [10]

    Lu D, Das A, Park W 2017 Opt. Express 25 12999

    [11]

    Zhang Z M 2007 Nano/Microscale Heat Transfer (New York: McGraw-Hill) p377

    [12]

    Francoeur M, Meng M P, Vaillon R 2009 J. Quant. Spectr. Radiat. Transfer 110 2002

    [13]

    Li J Y, Xuan Y M, Li Q, Han Y G 2013 J. Eng. Thermophys. 34 1548 (in Chinese)[李佳玉, 宣益民, 李强, 韩玉阁 2013 工程热 34 1548]

    [14]

    Wu H H, Huang Y, Zhu K Y 2016 J. Eng. Thermophys. 37 597 (in Chinese)[吴会海, 黄勇, 朱克勇 2016 工程热 37 597]

    [15]

    Zhu K Y, Huang Y, Wu H H 2016 J. Eng. Thermophys. 37 2393 (in Chinese)[朱克勇, 黄勇, 吴会海 2016 工程热 37 2393]

    [16]

    Vongsoasup N, Francoeur M, Hanamura K 2017 Int. J. Heat Mass Transfer 115 326

    [17]

    Chang J Y, Yang Y, Wang L 2015 Int. J. Heat Mass Transfer 87 237

    [18]

    Zhang R Z, Zhang Z M 2017 J. Quant. Spectr. Radiat. Transfer 197 132

    [19]

    Yu H T, Liu D, Duan Y Y, Zhen Y 2015 Int. J. Heat Mass Transfer 87 303

    [20]

    Luo C, Narayanaswamy A, Chen G, Joannopoulos J D 2004 Phys. Rev. Lett. 93 213905

    [21]

    Lussange J, Gurout R, Rosa F S S, Greffet J J, Lambrecht A, Reynaud S 2012 Phys. Rev. B 86 85432

    [22]

    Bai Y, Jiang Y, Liu L 2015 J. Quant. Spectr. Radiat. Transfer 158 36

    [23]

    Kanamori Y, Kobayashi K, Yugami H, Hane K 2003 Jpn. J. Appl. Phys. 42 4020

    [24]

    Bernardi M P, Dupr O, Blandre E, Chapuis P O, Vaillon R, Francoeur M 2015 Sci. Rep. 5 11626

    [25]

    Didari A, Meng M P 2017 J. Quant. Spectr. Radiat. Transfer 197 95

    [26]

    Datas A, Hirashima D, Hanamura K 2013 J. Therm. Sci. Tech. 8 91

    [27]

    Kim J, Naik G V, Emani N K, Guler U, Boltasseva A 2013 IEEE J. Sel. Top. Quant. 19 4601907

    [28]

    Djuriić A B, Li E H, Raki C D, Majewski M L 2000 Appl. Phys. A 70 29

    [29]

    Yang Y, Wang L 2016 Phys. Rev. Lett. 117 44301

    [30]

    Wei B, Li X Y, Wang F, Ge D B 2009 Acta Phys. Sin. 58 6174 (in Chinese)[魏兵, 李小勇, 王飞, 葛德彪 2009 58 6174]

    [31]

    Yu H, Liu D, Yang Z, Duan Y 2017 Sci. Rep. 7 1026

    [32]

    Kim J, Hwang J, Song K, Kim N, Shin J C, Lee J 2016 Appl. Phys. Lett. 108 253101

  • [1] 杨其利, 张兴坊, 刘凤收, 闫昕, 梁兰菊. 劈裂环-盘二聚体结构的多重Fano共振.  , 2022, 71(2): 027802. doi: 10.7498/aps.71.20210855
    [2] 杜玮, 尹格, 马云贵. 基于CaF2/W多层膜人工双曲介质的近场热光伏器件.  , 2020, 69(20): 204203. doi: 10.7498/aps.69.20200892
    [3] 黄运欢, 李璞. 金纳米棒复合体的消光特性.  , 2015, 64(20): 207301. doi: 10.7498/aps.64.207301
    [4] 秦飞飞, 张海明, 王彩霞, 郭聪, 张晶晶. 基于阳极氧化铝纳米光栅的薄膜硅太阳能电池双重陷光结构设计与仿真.  , 2014, 63(19): 198802. doi: 10.7498/aps.63.198802
    [5] 朱小敏, 任新成, 郭立新. 指数型粗糙地面与上方矩形截面柱宽带电磁散射的时域有限差分法研究.  , 2014, 63(5): 054101. doi: 10.7498/aps.63.054101
    [6] 刘建晓, 张郡亮, 苏明敏. 基于时域有限差分法的各向异性铁氧体圆柱电磁散射分析.  , 2014, 63(13): 137501. doi: 10.7498/aps.63.137501
    [7] 陈新莲, 孔凡敏, 李康, 高晖, 岳庆炀. 无序光子晶体提高GaN基蓝光发光二极管光提取效率的研究.  , 2013, 62(1): 017805. doi: 10.7498/aps.62.017805
    [8] 任新成, 郭立新, 焦永昌. 雪层覆盖的粗糙地面与上方矩形截面柱复合电磁散射的时域有限差分法研究.  , 2012, 61(14): 144101. doi: 10.7498/aps.61.144101
    [9] 张军, 于天宝, 刘念华, 廖清华, 何灵娟. 全内反射型三角晶格光子晶体多模波导中的光传播特性.  , 2011, 60(10): 104217. doi: 10.7498/aps.60.104217
    [10] 张旋, 廖清华, 陈淑文, 胡萍, 于天宝, 刘念华. 新型高效偏振光分束器的设计.  , 2011, 60(10): 104215. doi: 10.7498/aps.60.104215
    [11] 郭浩, 吴评, 于天宝, 廖清华, 刘念华, 黄永箴. 一种新型的光子晶体偏振光分束器的设计.  , 2010, 59(8): 5547-5552. doi: 10.7498/aps.59.5547
    [12] 王国军, 吴世法, 李旭峰, 李睿, 段建民, 潘石. 带金属尖四棱锥小孔光探针光斑近场分布数值模拟.  , 2010, 59(1): 192-198. doi: 10.7498/aps.59.192
    [13] 章海锋, 马力, 刘少斌. 磁化等离子体光子晶体缺陷态的研究.  , 2009, 58(2): 1071-1076. doi: 10.7498/aps.58.1071
    [14] 项 阳, 钱祖平, 刘 贤, 鲍峻松. 基于Drude-FDTD算法的单负介质组合填充波导传播特性研究.  , 2008, 57(9): 5537-5541. doi: 10.7498/aps.57.5537
    [15] 王慧琴, 刘正东, 王 冰. 同材质颗粒不同填充密度的随机介质中光场的空间分布.  , 2008, 57(4): 2186-2191. doi: 10.7498/aps.57.2186
    [16] 王 宏, 欧阳征标, 韩艳玲, 孟庆生, 罗贤达, 刘劲松. 随机性对部分随机介质激光器阈值的影响.  , 2007, 56(5): 2616-2622. doi: 10.7498/aps.56.2616
    [17] 闫长春, 薛国刚, 刘 诚, 陈 浩, 崔一平. 产生纳米级暗中空光束的方法研究.  , 2007, 56(1): 160-164. doi: 10.7498/aps.56.160
    [18] 刘少斌, 朱传喜, 袁乃昌. 等离子体光子晶体的FDTD分析.  , 2005, 54(6): 2804-2808. doi: 10.7498/aps.54.2804
    [19] 周 梅, 陈效双, 徐 靖, 曾 勇, 吴砚瑞, 陆 卫, 王连卫, 陈 瑜. 中红外波段硅基两维光子晶体的光子带隙.  , 2005, 54(1): 411-415. doi: 10.7498/aps.54.411
    [20] 肖家曦, 齐国生, 胡 华, 徐端颐. 多阶光存储原理分析及其读写系统前端信号处理研究.  , 2005, 54(1): 102-106. doi: 10.7498/aps.54.102
计量
  • 文章访问数:  6801
  • PDF下载量:  357
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-07-03
  • 修回日期:  2017-09-07
  • 刊出日期:  2019-01-20

/

返回文章
返回
Baidu
map