-
An analytic mathematical model of modulated laser-induced minority carrier density wave of silicon solar cells is developed, and light-induced carrier recombination radiation luminescence method (photocarrier radiometry (PCR)) is employed to detect the doping concentration, impedance and carrier transport parameters. The double knee characteristics of frequency domain response curve are investigated, and in a small ac signal case, the equivalent circuit topology structure of a solar cell is constructed. Through simulation analysis based on minority carrier density wave mathematical model, the effects of doping concentration, resistance and carrier transport parameters on the PCR frequency domain response are investigated. Donor/acceptor concentration, shunt resistance and carrier transport parameters of Si solar cell are obtained by PCR frequency-scanning experiments and multi-parameter fitting. The results show that the first knee position of PCR-detected large-area solar-cell frequency domain response curve is determined by the capacitive effect. The simplified mathematical model can be used to quantitatively describe and determine the doping concentration, shunt resistance and carrier transport parameters of silicon solar cell.
-
Keywords:
- photocarrier radiometry /
- frequency scanning /
- p-n junction capacitor /
- parameter measurement
[1] Kasemann M, Grote D, Walter B, Kwapil W, Trupke T, Augarten Y, Warta W 2008 Prog. Photovoltaics 16 297
[2] Davis J R, Rohatgi A, Hopkins R H, Blais P D, Rai-Choudhury P, McCormick J R, Mollenkopf H C 1980 IEEE Trans. Electron Dev. 27 677
[3] Yi S G, Zhang W H, Ai B, Song J W, Shen H 2014 Chin. Phys. B 23 103
[4] Chen D S, Yang J, Xu F, Zhou P H, Du H W, Shi J W, Yu Z S, Zhang Y H, Ma Z Q 2013 Chin. Phys. B 22 018801
[5] Liang L, Xu Q F, Hu M L, Sun H, Xiang G H, Zhou L B 2013 Acta Phys. Sin. 62 037301 (in Chinese) [梁磊, 徐琴芳, 忽满利, 孙浩, 向光华, 周利斌 2013 62 037301]
[6] Mandelis A, Batista J, Shaughnessy D 2003 Phys. Rev. B 67 205208
[7] Li B C, Shaughnessy D, Mandelis A, Batista J, Garcia J 2004 J. Appl. Phys. 95 7832
[8] Li B C, Shaughnessy D, Mandelis A 2004 J. Appl. Phys. 97 023701
[9] Jenny N 2003 The Physics of Solar Cells (London: Imperial College Press) pp163-169
[10] Mandelis A 2001 Diffusion Wave Fields Mathematical Methods and Green Functions (New York: Springer) pp588-593
[11] Chawla B R, Gummel H K 1971 IEEE Trans. Electron Dev. 18 178
[12] Buh G H, Chung H J, Kim C K, Yi J H, Yoon I T, Kuk Y 2000 Appl. Phys. Lett. 77 106
-
[1] Kasemann M, Grote D, Walter B, Kwapil W, Trupke T, Augarten Y, Warta W 2008 Prog. Photovoltaics 16 297
[2] Davis J R, Rohatgi A, Hopkins R H, Blais P D, Rai-Choudhury P, McCormick J R, Mollenkopf H C 1980 IEEE Trans. Electron Dev. 27 677
[3] Yi S G, Zhang W H, Ai B, Song J W, Shen H 2014 Chin. Phys. B 23 103
[4] Chen D S, Yang J, Xu F, Zhou P H, Du H W, Shi J W, Yu Z S, Zhang Y H, Ma Z Q 2013 Chin. Phys. B 22 018801
[5] Liang L, Xu Q F, Hu M L, Sun H, Xiang G H, Zhou L B 2013 Acta Phys. Sin. 62 037301 (in Chinese) [梁磊, 徐琴芳, 忽满利, 孙浩, 向光华, 周利斌 2013 62 037301]
[6] Mandelis A, Batista J, Shaughnessy D 2003 Phys. Rev. B 67 205208
[7] Li B C, Shaughnessy D, Mandelis A, Batista J, Garcia J 2004 J. Appl. Phys. 95 7832
[8] Li B C, Shaughnessy D, Mandelis A 2004 J. Appl. Phys. 97 023701
[9] Jenny N 2003 The Physics of Solar Cells (London: Imperial College Press) pp163-169
[10] Mandelis A 2001 Diffusion Wave Fields Mathematical Methods and Green Functions (New York: Springer) pp588-593
[11] Chawla B R, Gummel H K 1971 IEEE Trans. Electron Dev. 18 178
[12] Buh G H, Chung H J, Kim C K, Yi J H, Yoon I T, Kuk Y 2000 Appl. Phys. Lett. 77 106
Catalog
Metrics
- Abstract views: 5741
- PDF Downloads: 414
- Cited By: 0