-
We obtain the energy eigenvalues and wave functions of the single layer molybdenum disulfide by using an effective Hamiltonian. Moreover, the density of states and high electron-electron screening length up to 108 cm-1 are also evaluated based on the dielectric function of MoS2. It is shown that the quasi-linear energy bands split off due to the spin-orbit couplings. Plasmons in such a system are investigated theoretically within diagrammatic self-consistent field theory. In the random phase approximation, it is found that two plasma spectra can be produced via intra band transitions induced in conduction bands in monolayer MoS2 because of splitting off. The plasma spectrum frequency increases with increasing wave-vector q and electron density. It is found that the two plasmon modes induced by the spin intra-subband transitions are acoustic-like and depend strongly on wave-vector q. We find that the plasma spectrum is very different from those of graphene and two-dimensional electron gas due to the quasi-linear dispersion and spin-orbit couplings in single layer MoS2. Moreover, the plasmon frequency can be effectively controlled through changing the doping electron density. Our results exhibit some interesting features which can be utilized to realize the plasmonic devices based on the single layer MoS2.
-
Keywords:
- MoS2 /
- plasmon /
- spin-orbit couplings
[1] Wood R W 1902 Phil. Magm. 4 396
[2] Richie R H 1957 Phys. Rev. 106 874
[3] Stem E A, Ferrell R A 1960 Phys. Rev. 120 130
[4] Otto A 1968 Eur. Phys. J. A 216 398
[5] Kretchmann E 1971 Eur. Phys. J. A 241 313
[6] Raether H 1988 Springer Tracts in Modern Physics 111 110
[7] Khlebtsov B N 2008 Phys. Rev. B 77 035440
[8] Kahraman M, Tokman N, Culha M 2008 ChemPhys Chem 9 902
[9] Ruan Z, Qiu M 2006 Phys. Rev. Lett. 96 233901
[10] Smith D R, Padilla W J, Vier D C 2000 Phys. Rev. Lett. 84 4184
[11] Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotechnol. 6 147
[12] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666
[13] Yin Z Y, Li H, Li H, Jiang L, Shi Y M, Sun Y H, Lu G, Zhang Q, Chen X D, Zhang H 2012 ACS Nano 6 74
[14] Mak K F, Lee C G, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805
[15] Lee H S, Min S W, Chang Y G, Park M K, Nam T, Kim H J, Kim J H, Ryu S M 2012 Nano Lett. 12 3695
[16] Cao T, Wang G, Han W P, Ye H Q, Zhu C R, Shi J R, Niu Q, Tan P H, Wang E G, Liu B L, Feng J 2012 Nat. Commun. 3 887
[17] Li Z W, Li Y, Han T Y 2017 ACS Nano 11 1165
[18] Yang J H, Ma C R, Liu P, Yang G W 2017 ACS Photon. 4 1092
[19] Wang Y C, Ou J Z, Chrimes A F 2015 Nano Lett. 15 883
[20] Kadantsev E S, Hawrylak P 2012 Solid State Commun. 152 909
[21] Xiao D, Liu G B, Feng W, Xu X, Yao W 2012 Phys. Rev. Lett. 108 196802
[22] Li Z, Carbotte J P 2012 Phys. Rev. B 86 205425
[23] Mahan G D 2000 Many-Particle Physics (New York: World Book Publishing House)
[24] Dong H M, Xu W, Zeng Z, Lu T C, Peeters F M 2008 Phys. Rev. B 77 235402
[25] Dong H M, Li L L, Wang W Y 2012 Physica E 44 1889
[26] Mackens U, Heitmann D, Prager L, Kotthaus J P, Beinvogl W 1984 Phys. Rev. Lett. 53 1485
-
[1] Wood R W 1902 Phil. Magm. 4 396
[2] Richie R H 1957 Phys. Rev. 106 874
[3] Stem E A, Ferrell R A 1960 Phys. Rev. 120 130
[4] Otto A 1968 Eur. Phys. J. A 216 398
[5] Kretchmann E 1971 Eur. Phys. J. A 241 313
[6] Raether H 1988 Springer Tracts in Modern Physics 111 110
[7] Khlebtsov B N 2008 Phys. Rev. B 77 035440
[8] Kahraman M, Tokman N, Culha M 2008 ChemPhys Chem 9 902
[9] Ruan Z, Qiu M 2006 Phys. Rev. Lett. 96 233901
[10] Smith D R, Padilla W J, Vier D C 2000 Phys. Rev. Lett. 84 4184
[11] Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotechnol. 6 147
[12] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666
[13] Yin Z Y, Li H, Li H, Jiang L, Shi Y M, Sun Y H, Lu G, Zhang Q, Chen X D, Zhang H 2012 ACS Nano 6 74
[14] Mak K F, Lee C G, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805
[15] Lee H S, Min S W, Chang Y G, Park M K, Nam T, Kim H J, Kim J H, Ryu S M 2012 Nano Lett. 12 3695
[16] Cao T, Wang G, Han W P, Ye H Q, Zhu C R, Shi J R, Niu Q, Tan P H, Wang E G, Liu B L, Feng J 2012 Nat. Commun. 3 887
[17] Li Z W, Li Y, Han T Y 2017 ACS Nano 11 1165
[18] Yang J H, Ma C R, Liu P, Yang G W 2017 ACS Photon. 4 1092
[19] Wang Y C, Ou J Z, Chrimes A F 2015 Nano Lett. 15 883
[20] Kadantsev E S, Hawrylak P 2012 Solid State Commun. 152 909
[21] Xiao D, Liu G B, Feng W, Xu X, Yao W 2012 Phys. Rev. Lett. 108 196802
[22] Li Z, Carbotte J P 2012 Phys. Rev. B 86 205425
[23] Mahan G D 2000 Many-Particle Physics (New York: World Book Publishing House)
[24] Dong H M, Xu W, Zeng Z, Lu T C, Peeters F M 2008 Phys. Rev. B 77 235402
[25] Dong H M, Li L L, Wang W Y 2012 Physica E 44 1889
[26] Mackens U, Heitmann D, Prager L, Kotthaus J P, Beinvogl W 1984 Phys. Rev. Lett. 53 1485
Catalog
Metrics
- Abstract views: 6179
- PDF Downloads: 217
- Cited By: 0