Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

The role of chain conformation in energy transfer properties of single conjugated polymer molecule

Qin Ya-Qiang Chen Rui-Yun Shi Ying Zhou Hai-Tao Zhang Guo-Feng Qin Cheng-Bing Gao Yan Xiao Lian-Tuan Jia Suo-Tang

Citation:

The role of chain conformation in energy transfer properties of single conjugated polymer molecule

Qin Ya-Qiang, Chen Rui-Yun, Shi Ying, Zhou Hai-Tao, Zhang Guo-Feng, Qin Cheng-Bing, Gao Yan, Xiao Lian-Tuan, Jia Suo-Tang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Study of the relationship between conformation and photophysics of individual -conjugated polymer chain is one of the most important problems in polymer nanoscience and nanotechnology, which will facilitate the application of conjugated polymer in a range of electronic devices such as organic field-effect transistors, light-emitting diodes, and solar cells. Single-molecule spectroscopy has emerged as a powerful tool to unravel structure and dynamic heterogeneities that are hidden in ensemble average. Identification of the emitting segments through fluorescence of single conjugated polymer molecules and their dependence on the conformation can help reveal the mechanism and the extent of energy transfer process in a single polymer chain. In this paper, the photophysical properties of individual poly[2, 7-(9, 9-dioctylfluorene)-alt-4, 7-bis(thiophen-2-yl) benzo-2, 1, 3-thiadiazole] (PFO-DBT) conjugated polymer molecules are measured based on the defocused wide-field microscopy of single molecules. The single PFO-DBT molecules are prepared on cleaned glass coverslips by spin-coating solution of poly[methyl methacrylate] (PMMA) containing 110-9 mol/L PFO-DBT molecules in chloroform and toluene, respectively. Defocused imaging of single conjugated polymer molecule is performed based on a wide-field fluorescence microscope system. The change of defocused patterns of individual polymer chain maps the angular distribution of emitted chromophore and thus the emitting dipole orientation. Fluorescence trajectory and corresponding emission dipole moments of single conjugated polymer molecules are analyzed to identify the emitting conjugated segments. It is found that single PFO-DBT conjugated polymer molecules prepared by chloroform solvent show extended conformation. The intrachain energy transfer is dominant in the single conjugated polymer molecules that take extended conformation, which leads to photophysical properties of multiple chromophores. In contrast, single PFO-DBT conjugated polymer molecules prepared by toluene solvent hold folded conformation, which exhibit emission from single chromophore due to efficient interchain energy transfer. The emitting chromophore is not constant in a single PFO-DBT conjugated polymer molecule with folded conformation. About 35% of the single conjugated molecules prepared with toluene show only one constant emitting chromophore before photobleaching. However, about 65% of single conjugated polymer molecules prepared with toluene show two or more sequencely emitting chromophores. It can be concluded that the energy transfer properties of single PFO-DBT conjugated polymer molecule is greatly dependent on the conformation, which can be reflected in its photophysical properties. The study on the influence of single conjugated polymer conformation on energy transfer efficiency can provide the reference for the preparation and performance of optoelectronic devices and molecular devices based on conjugated polymer.
      Corresponding author: Chen Rui-Yun, chenry@sxu.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFA0304203), the National Natural Science Foundation of China (Grant Nos. 61527824, 11504216, 11374196, 61675119, 11404200, 61605104, U1510133), the Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China (Grant No. IRT13076), and the Applied Basic Research Program of Shanxi Province, China (Grant No. 201601D021016).
    [1]

    Burroughes J H, Bradley D D C, Brown A R, Marks R N, Mackay K, Friend R H, Burns P L, Holmes A B 1990 Nature 347 539

    [2]

    Liu C W, Zhou X, Yue W J, Wang M T, Qiu Z L, Meng W L, Chen J W, Qi J J, Dong C 2015 Acta Phys. Sin. 64 038804 (in Chinese) [刘长文, 周讯, 岳文瑾, 王命泰, 邱泽亮, 孟维利, 陈俊伟, 齐娟娟, 董超 2015 64 038804]

    [3]

    Nikolka M, Nasrallah I, Rose B, Ravva M K, Broch K, Sadhanala A, Harkin D, Charmet J, Hurhangee M, Brown A, Illig S, Too P, Jongman J, McCulloch I, Bredas J L, Sirringhaus H 2017 Nat. Mater. 16 356

    [4]

    Reineke S, Lindner F, Schwartz G, Seidler N, Walzer K, Lssem B, Leo K 2009 Nature 459 234

    [5]

    Senanayak S P, Yang B Y, Thomas T H, Giesbrecht N, Huang W C, Gann E, Nair B, Goedel K, Guha S, Moya X, McNeill C R, Docampo P, Sadhanala A, Friend R H, Sirringhaus H 2017 Sci. Adv. 3 e1601935

    [6]

    Zhao W C, Qian D P, Zhang S Q, Li S S, Inganäs O, Gao F, Hou J H 2016 Adv. Mater. 28 4734

    [7]

    Vacha M, Habuchi S 2010 NPG Asia Mater. 2 134

    [8]

    Tretiak S, Saxena A, Martin R L, Bishop A R 2002 Phys. Rev. Lett. 89 097402

    [9]

    Ebihara Y, Habuchi S, Vacha M 2009 Chem. Lett. 38 1094

    [10]

    Niu Q L, Zhang Y, Fan G H 2009 Acta Phys. Sin. 58 8630 (in Chinese) [牛巧利, 章勇, 范广涵 2009 58 8630]

    [11]

    Wang D D, Wu Z X, Lei X L, Zhang W W, Jiao B, Wang D W, Hou X 2013 Phys. Stat. Sol. 210 2556

    [12]

    Collini E, Scholes G D 2009 Science 323 369

    [13]

    Huser T, Yan M, Rothberg L J 2000 Proc. Natl. Acad. Sci. USA 97 11187

    [14]

    Nguyen T Q, Martini I B, Liu J, Schwartz B J 2000 J. Phys. Chem. B 104 237

    [15]

    Chen R Y, Zhang G F, Qin C B, Gao Y, Xiao L T, Jia S T 2016 Laser Optoelectr. Prog. 53 020003 (in Chinese) [陈瑞云, 张国峰, 秦成兵, 高岩, 肖连团, 贾锁堂 2016 激光与光电子学进展 53 020003]

    [16]

    Chen R Y, Wu R X, Zhang G F, Gao Y, Xiao L T, Jia S T 2014 Sensors 14 2449

    [17]

    Moerner W E, Kador L 1989 Phys. Rev. Lett. 62 2535

    [18]

    Orrit M, Bernard J 1990 Phys. Rev. Lett. 65 2716

    [19]

    Kulzer F, Orrit M 2004 Annu. Rev. Phys. Chem. 55 585

    [20]

    Moerner W E, Fromm D P 2003 Rev. Sci. Instrum. 74 3597

    [21]

    Schroeyers W, Vallée R, Patra D, Hofkens J, Habuchi S, Vosch T, Cotlet M, Mllen K, Enderlein J, de Schryver F C 2004 J. Am. Chem. Soc. 126 14310

    [22]

    Han B P, Zheng Y J 2008 Phys. Rev. A 78 015402

    [23]

    Barbara P F, Gesquiere A J, Park S J, Lee Y J 2005 Acc. Chem. Res. 38 602

    [24]

    Li B, Zhang G F, Jing M Y, Chen R Y, Qin C B, Gao Y, Xiao L T, Jia S T 2016 Acta Phys. Sin. 65 218201 (in Chinese) [李斌, 张国峰, 景明勇, 陈瑞云, 秦成兵, 高岩, 肖连团, 贾锁堂 2016 65 218201]

    [25]

    Uji-i H, Melnikov S M, Deres A, Bergamini G, de Schryver F, Herrmann A, Mllen K, Enderlein J, Hofkens J 2006 Polymer 47 2511

    [26]

    Böhmer M, Enderlein J 2003 J. Opt. Soc. Am. B 20 554

    [27]

    Habuchi S, Oba T, Vacha M 2011 Phys. Chem. Chem. Phys. 13 7001

    [28]

    Yu J, Hu D H, Barbara P F 2000 Science 289 1327

    [29]

    Lee Y J, Kim D Y, Grey J K, Barbara P F 2005 ChemPhysChem 6 2404

    [30]

    Richards B, Wolf E 1959 Electromagnetic Diffraction in Optical Systems. Ⅱ. Structure of the Image Field in an Aplanatic System (London: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences) pp358-379

    [31]

    Nguyen T Q, Doan V, Schwartz B J 1999 J. Chem. Phys. 110 4068

    [32]

    Hu D H, Yu J, Wong K, Bagchi B, Rossky P J, Barbara P F 2000 Nature 405 1033

    [33]

    Scholes G D, Rumbles G 2006 Nat. Mater. 5 683

    [34]

    Schwartz B J 2003 Annu. Rev. Phys. Chem. 54 141

    [35]

    Beljonne D, Pourtois G, Silva C, Hennebicq E, Herz L M, Friend R H, Scholes G D, Setayesh S, Mllen K, Brédas J L 2002 Proc. Natl. Acad. Sci. USA 99 10982

    [36]

    Dedecker P, Muls B, Deres A, Uji-i H, Hotta J i, Sliwa M, Soumillion J P, Mllen K, Enderlein J, Hofkens J 2009 Adv. Mater. 21 1079

    [37]

    Diehl F P, Roos C, Duymaz A, Lunkenheimer B, Köhn A, Basché T 2014 J. Phys. Chem. Lett. 5 262

    [38]

    Yan M, Rothberg L J, Papadimitrakopoulos F, Galvin M E, Miller T M 1994 Phys. Rev. Lett. 73 744

  • [1]

    Burroughes J H, Bradley D D C, Brown A R, Marks R N, Mackay K, Friend R H, Burns P L, Holmes A B 1990 Nature 347 539

    [2]

    Liu C W, Zhou X, Yue W J, Wang M T, Qiu Z L, Meng W L, Chen J W, Qi J J, Dong C 2015 Acta Phys. Sin. 64 038804 (in Chinese) [刘长文, 周讯, 岳文瑾, 王命泰, 邱泽亮, 孟维利, 陈俊伟, 齐娟娟, 董超 2015 64 038804]

    [3]

    Nikolka M, Nasrallah I, Rose B, Ravva M K, Broch K, Sadhanala A, Harkin D, Charmet J, Hurhangee M, Brown A, Illig S, Too P, Jongman J, McCulloch I, Bredas J L, Sirringhaus H 2017 Nat. Mater. 16 356

    [4]

    Reineke S, Lindner F, Schwartz G, Seidler N, Walzer K, Lssem B, Leo K 2009 Nature 459 234

    [5]

    Senanayak S P, Yang B Y, Thomas T H, Giesbrecht N, Huang W C, Gann E, Nair B, Goedel K, Guha S, Moya X, McNeill C R, Docampo P, Sadhanala A, Friend R H, Sirringhaus H 2017 Sci. Adv. 3 e1601935

    [6]

    Zhao W C, Qian D P, Zhang S Q, Li S S, Inganäs O, Gao F, Hou J H 2016 Adv. Mater. 28 4734

    [7]

    Vacha M, Habuchi S 2010 NPG Asia Mater. 2 134

    [8]

    Tretiak S, Saxena A, Martin R L, Bishop A R 2002 Phys. Rev. Lett. 89 097402

    [9]

    Ebihara Y, Habuchi S, Vacha M 2009 Chem. Lett. 38 1094

    [10]

    Niu Q L, Zhang Y, Fan G H 2009 Acta Phys. Sin. 58 8630 (in Chinese) [牛巧利, 章勇, 范广涵 2009 58 8630]

    [11]

    Wang D D, Wu Z X, Lei X L, Zhang W W, Jiao B, Wang D W, Hou X 2013 Phys. Stat. Sol. 210 2556

    [12]

    Collini E, Scholes G D 2009 Science 323 369

    [13]

    Huser T, Yan M, Rothberg L J 2000 Proc. Natl. Acad. Sci. USA 97 11187

    [14]

    Nguyen T Q, Martini I B, Liu J, Schwartz B J 2000 J. Phys. Chem. B 104 237

    [15]

    Chen R Y, Zhang G F, Qin C B, Gao Y, Xiao L T, Jia S T 2016 Laser Optoelectr. Prog. 53 020003 (in Chinese) [陈瑞云, 张国峰, 秦成兵, 高岩, 肖连团, 贾锁堂 2016 激光与光电子学进展 53 020003]

    [16]

    Chen R Y, Wu R X, Zhang G F, Gao Y, Xiao L T, Jia S T 2014 Sensors 14 2449

    [17]

    Moerner W E, Kador L 1989 Phys. Rev. Lett. 62 2535

    [18]

    Orrit M, Bernard J 1990 Phys. Rev. Lett. 65 2716

    [19]

    Kulzer F, Orrit M 2004 Annu. Rev. Phys. Chem. 55 585

    [20]

    Moerner W E, Fromm D P 2003 Rev. Sci. Instrum. 74 3597

    [21]

    Schroeyers W, Vallée R, Patra D, Hofkens J, Habuchi S, Vosch T, Cotlet M, Mllen K, Enderlein J, de Schryver F C 2004 J. Am. Chem. Soc. 126 14310

    [22]

    Han B P, Zheng Y J 2008 Phys. Rev. A 78 015402

    [23]

    Barbara P F, Gesquiere A J, Park S J, Lee Y J 2005 Acc. Chem. Res. 38 602

    [24]

    Li B, Zhang G F, Jing M Y, Chen R Y, Qin C B, Gao Y, Xiao L T, Jia S T 2016 Acta Phys. Sin. 65 218201 (in Chinese) [李斌, 张国峰, 景明勇, 陈瑞云, 秦成兵, 高岩, 肖连团, 贾锁堂 2016 65 218201]

    [25]

    Uji-i H, Melnikov S M, Deres A, Bergamini G, de Schryver F, Herrmann A, Mllen K, Enderlein J, Hofkens J 2006 Polymer 47 2511

    [26]

    Böhmer M, Enderlein J 2003 J. Opt. Soc. Am. B 20 554

    [27]

    Habuchi S, Oba T, Vacha M 2011 Phys. Chem. Chem. Phys. 13 7001

    [28]

    Yu J, Hu D H, Barbara P F 2000 Science 289 1327

    [29]

    Lee Y J, Kim D Y, Grey J K, Barbara P F 2005 ChemPhysChem 6 2404

    [30]

    Richards B, Wolf E 1959 Electromagnetic Diffraction in Optical Systems. Ⅱ. Structure of the Image Field in an Aplanatic System (London: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences) pp358-379

    [31]

    Nguyen T Q, Doan V, Schwartz B J 1999 J. Chem. Phys. 110 4068

    [32]

    Hu D H, Yu J, Wong K, Bagchi B, Rossky P J, Barbara P F 2000 Nature 405 1033

    [33]

    Scholes G D, Rumbles G 2006 Nat. Mater. 5 683

    [34]

    Schwartz B J 2003 Annu. Rev. Phys. Chem. 54 141

    [35]

    Beljonne D, Pourtois G, Silva C, Hennebicq E, Herz L M, Friend R H, Scholes G D, Setayesh S, Mllen K, Brédas J L 2002 Proc. Natl. Acad. Sci. USA 99 10982

    [36]

    Dedecker P, Muls B, Deres A, Uji-i H, Hotta J i, Sliwa M, Soumillion J P, Mllen K, Enderlein J, Hofkens J 2009 Adv. Mater. 21 1079

    [37]

    Diehl F P, Roos C, Duymaz A, Lunkenheimer B, Köhn A, Basché T 2014 J. Phys. Chem. Lett. 5 262

    [38]

    Yan M, Rothberg L J, Papadimitrakopoulos F, Galvin M E, Miller T M 1994 Phys. Rev. Lett. 73 744

  • [1] Xu Zhuo, Guo Jing-Yuan, Xiong Zheng-Ye, Tang Qiang, Gao Mu. Luminescence spectra and energy transfer of Tm3+ and Tb3+ doped in LiMgPO4 phosphors. Acta Physica Sinica, 2021, 70(16): 167801. doi: 10.7498/aps.70.20210357
    [2] Fu Cong, Ye Meng-Hao, Zhao Hui, Chen Yu-Guang, Yan Yong-Hong. Effects of intrachain disorder on photoexcitation in conjugated polymer chains. Acta Physica Sinica, 2021, 70(11): 117201. doi: 10.7498/aps.70.20201801
    [3] Zhang Guo-Feng, Li Bin, Chen Rui-Yun, Qin Cheng-Bing, Gao Yan, Xiao Lian-Tuan, Jia Suo-Tang. Single-molecule probes revealed dynamics of confined nano-regions in miscible polymer blends. Acta Physica Sinica, 2019, 68(14): 148201. doi: 10.7498/aps.68.20190423
    [4] Shi Ying, Li Yao, Zhou Hai-Tao, Chen Rui-Yun, Zhang Guo-Feng, Qin Cheng-Bing, Gao Yan, Xiao Lian-Tuan, Jia Suo-Tang. Real-time measurement of dynamic evolution of absorption and emission properties of chromophores in single conjugated polymer molecules. Acta Physica Sinica, 2019, 68(4): 048201. doi: 10.7498/aps.68.20181986
    [5] Kang Wen-Bin, Wang Jun, Wang Wei. Conformation of disordered peptides modulated by distributions of charged residues: Case study of random peptides composed of arginines and aspartic acids. Acta Physica Sinica, 2018, 67(5): 058701. doi: 10.7498/aps.67.20172246
    [6] Li Mu-Ye, Li Fang, Wei Lai, He Zhi-Cong, Zhang Jun-Pei, Han Jun-Bo, Lu Pei-Xiang. Fluorescence resonance energy transfer in a aqueous system of CdTe quantum dots and Rhodamine B with two-photon excitation. Acta Physica Sinica, 2015, 64(10): 108201. doi: 10.7498/aps.64.108201
    [7] Liu Chang-Wen, Zhou Xun, Yue Wen-Jin, Wang Ming-Tai, Qiu Ze-Liang, Meng Wei-Li, Chen Jun-Wei, Qi Juan-Juan, Dong Chao. Hybrid polymer-based solar cells with metal oxides as the main electron acceptor and transporter. Acta Physica Sinica, 2015, 64(3): 038804. doi: 10.7498/aps.64.038804
    [8] Ning Cheng, Feng Zhi-Xing, Xue Chuang. Basic characteristics of kinetic energy transfer in the dynamic hohlraums of Z-pinch. Acta Physica Sinica, 2014, 63(12): 125208. doi: 10.7498/aps.63.125208
    [9] He Yue-Di, Xu Zheng, Zhao Su-Ling, Liu Zhi-Min, Gao Song, Xu Xu-Rong. Electroluminescent energy transfer of hybrid quantum dotsdevice. Acta Physica Sinica, 2014, 63(17): 177301. doi: 10.7498/aps.63.177301
    [10] Li Dong-Mei, Yuan Xiao-Juan, Zhou Jia-Qiang. Effects of intrachain disorder on polaron transport in conjugated polymer. Acta Physica Sinica, 2013, 62(16): 167202. doi: 10.7498/aps.62.167202
    [11] Yuan Qiang, Wei Xiao-Feng, Zhang Xiao-Min, Zhang Xin, Zhao Jun-Pu, Huang Wen-Hui, Hu Dong-Xia. Study on stimulated Brillouin scatting energy transfer to amplify laser pulses for shock ignition in laser fusion facilities. Acta Physica Sinica, 2012, 61(11): 114207. doi: 10.7498/aps.61.114207
    [12] Wang Ke-Dong, Gu Jun, Zhu Chuan-Chuan, Liu Yu-Fang. Ab initio study on CH3C(O)OSSOC(O)CH3: configurations and energies. Acta Physica Sinica, 2011, 60(7): 073102. doi: 10.7498/aps.60.073102
    [13] Peng Rui-Xiang, Chen Chong, Shen Wei, Wang Ming-Tai, Guo Ying, Geng Hong-Wei. Amorphous/crystalline blend effects on the performance of polymer-based photovoltaic cells. Acta Physica Sinica, 2009, 58(9): 6582-6589. doi: 10.7498/aps.58.6582
    [14] Xu Deng. Stimulated emission properties of an organic salt-doped polymer film in microcavity. Acta Physica Sinica, 2009, 58(4): 2781-2784. doi: 10.7498/aps.58.2781
    [15] Shen Han, Liu Jie, Chen Zhi-Feng, Huang Jin-Wang, Shen Yong, Wang Hui, Ji Liang-Nian. Ultrafast energy transfer of a porphyrin-polypyridyl ruthenium (Ⅱ) hybrid linked by a butyl chain. Acta Physica Sinica, 2008, 57(11): 7354-7359. doi: 10.7498/aps.57.7354
    [16] Xu Deng, Ye Li-Hua, Cui Yi-Ping, Xi Jun, Li Li, Wang Qiong. Study of photoluminescence and energy transfer properties of an organic dye salt doped thin films. Acta Physica Sinica, 2008, 57(5): 3267-3270. doi: 10.7498/aps.57.3267
    [17] Wu Chun-Hong, Liu Peng-Yi, Hou Lin-Tao, Li Yan-Wu. The energy transfer in phosphorescent dye PtOEP doped organic molecule Alq. Acta Physica Sinica, 2008, 57(11): 7317-7321. doi: 10.7498/aps.57.7317
    [18] Song Shu-Fang, Zhao De-Wei, Xu Zheng, Xu Xu-Rong. Energy transfer in organic quantum well structures. Acta Physica Sinica, 2007, 56(6): 3499-3503. doi: 10.7498/aps.56.3499
    [19] Zhang Peng, Zhou Yin-Hua, Liu Xiu-Fen, Tian Wen-Jing, Li Min, Zhang Guo. Study on the energy transfer and luminescent properties in PVK:DBVP blend system. Acta Physica Sinica, 2006, 55(10): 5494-5498. doi: 10.7498/aps.55.5494
    [20] FENG WEI, CAO MENG, WEI WEI, WU HONG-CAI, WAN MEI-XIANG, KATSUMI YOSHINO. PROPERTIES OF CONDUCTING POLYMER DONOR-ACCEPTOR COMPOSITE FILMS AND PHOTOVOLTAIC CHARACTERISTICS OF JUNCTION DEVICES. Acta Physica Sinica, 2001, 50(6): 1157-1162. doi: 10.7498/aps.50.1157
Metrics
  • Abstract views:  6444
  • PDF Downloads:  192
  • Cited By: 0
Publishing process
  • Received Date:  01 July 2017
  • Accepted Date:  05 September 2017
  • Published Online:  05 December 2017

/

返回文章
返回
Baidu
map