搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金属衬底上高质量大面积石墨烯的插层及其机制

郭辉 路红亮 黄立 王雪艳 林晓 王业亮 杜世萱 高鸿钧

引用本文:
Citation:

金属衬底上高质量大面积石墨烯的插层及其机制

郭辉, 路红亮, 黄立, 王雪艳, 林晓, 王业亮, 杜世萱, 高鸿钧

Intercalation and its mechanism of high quality large area graphene on metal substrate

Guo Hui, Lu Hong-Liang, Huang Li, Wang Xue-Yan, Lin Xiao, Wang Ye-Liang, Du Shi-Xuan, Gao Hong-Jun
PDF
导出引用
  • 石墨烯作为一种新型二维材料,因其优异的性质,在科学和应用领域具有非常重要的意义.而其超高的载流子迁移率、室温量子霍尔效应等,使其在信息器件领域备受关注.如何获得高质量并且与当代硅基工艺兼容的石墨烯功能器件,是未来将石墨烯应用于电子学领域的关键.近年来,研究人员发展了一种在外延石墨烯和金属衬底之间实现硅插层的技术,将金属表面外延石墨烯高质量、大面积的特点与当代硅基工艺结合起来,实现了无需转移且无损地将高质量石墨烯置于半导体之上.通过系统的实验研究并结合理论计算,揭示了插层过程包含四个主要阶段:诱导产生缺陷、异质原子插层、石墨烯自我修复和异质原子扩散成膜,并证实了这一插层机制的普适性.拉曼和角分辨光电子能谱实验结果表明,插层后的石墨烯恢复了本征特性,接近自由状态.此外,还实现了多种单质元素的插层.不同种类的原子形成不同的插层结构,从而构成了多种石墨烯/插层异质结.这为调控石墨烯的性质提供了实验基础,也展现了该插层技术的普适性.
    Graphene, a two-dimensional material with honeycomb lattice, has attracted great attention from the communities of fundamental research and industry, due to novel phenomena such as quantum Hall effect at room temperature, Berry phase, and Klein tunneling, and excellent properties including extremely high carrier mobility, high Young's modulus, high thermal conductivity and high flexibility. Some key issues hinder graphene from being used in electronics, including how to integrate it with Si, since Si based technology is widely used in modern microelectronics, and how to place high-quality large area graphene on semiconducting or insulating substrates. A well-known method of generating large-area and high-quality graphene is to epitaxially grow it on a single crystal metal substrate. However, due to the strong interaction between graphene and metal substrate, the intrinsic electronic structure is greatly changed and the conducting substrate also prevents it from being directly used in electronics. Recently, we have developed a technique, which intercalates silicon between epitaxial graphene and metal substrate such as Ru (0001) and Ir (111). Experimental results from Raman, angle-resolved photoemission spectroscopy, and scanning tunneling spectroscopy confirm that the intercalation layer decouples the interaction between graphene and metal substrate, which results in the recovery of its intrinsic band structure. Furthermore, we can use this technique to intercalate thick Si beyond one layer and intercalate Si between graphene and metal film, which indicates the possibility of integrating both graphene and Si device and vast potential applications in industry by reducing its cost. Besides Si, many other metal elements including Hf, Pb, Pt, Pd, Ni, Co, Au, In, and Ce can also be intercalated between graphene and metal substrate, implying the universality of this technique. Considering the versatility of these elements, we can expect this intercalation technique to have wide applications in tuning graphene properties. We also investigate the intercalation mechanism in detail experimentally and theoretically, and find that the intercalation process is composed of four steps:creation of defects, migration of heteroatoms, self-repairing of graphene, and growth of intercalation layers. The intercalation of versatile elements with different structures by this technique provides a new route to the construction of graphene heterostructures, espectially van der Waals heterostructure such as graphene/silicene and graphene/hafnene, and also opens the way for placing graphene on insulating substrate for electronic applications if the intercalation layer can be oxidized by further oxygen intercalation.
      通信作者: 杜世萱, sxdu@iphy.ac.cn;hjgao@iphy.ac.cn ; 高鸿钧, sxdu@iphy.ac.cn;hjgao@iphy.ac.cn
    • 基金项目: 国家重点研发计划(批准号:2016YFA0202300)、国家重点基础研究发展计划(批准号:2013CBA01600)、国家自然科学基金(批准号:61390501,61471337,51325204,61622116,61504149,11604373)、中国科学院和中国科学院大学青年教师启动基金资助的课题.
      Corresponding author: Du Shi-Xuan, sxdu@iphy.ac.cn;hjgao@iphy.ac.cn ; Gao Hong-Jun, sxdu@iphy.ac.cn;hjgao@iphy.ac.cn
    • Funds: Project supported by the National Key Research and Development Projects of China (Grant No. 2016YFA0202300), the National Basic Research Program of China (Grant No. 2013CBA01600), the National Natural Science Foundation of China (Grant Nos. 61390501, 61471337, 51325204, 61622116, 61504149, 11604373), the Chinese Academy of Sciences, and the President Funds of University of Chinese Academy of Sciences.
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197

    [2]

    Novoselov K S, Jiang Z, Zhang Y, Morozov S V, Stormer H L, Zeitler U, Maan J C, Boebinger G S, Kim P, Geim A K 2007 Science 315 1379

    [3]

    Zhang Y B, Tan Y W, Stormer H L, Kim P 2005 Nature 438 201

    [4]

    Beenakker C W J 2006 Phys. Rev. Lett. 97 067007

    [5]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [6]

    Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109

    [7]

    Li X S, Cai W W, An J H, Kim S, Nah J, Yang D X, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L, Ruoff R S 2009 Science 324 1312

    [8]

    Bae S, Kim H, Lee Y, Xu X F, Park J S, Zheng Y, Balakrishnan J, Lei T, Kim H R, Song Y I, Kim Y J, Kim K S, Ozyilmaz B, Ahn J H, Hong B H, Iijima S 2010 Nat. Nanotechnol. 5 574

    [9]

    Gao L B, Ren W C, Xu H L, Jin L, Wang Z X, Ma T, Ma L P, Zhang Z Y, Fu Q, Peng L M, Bao X H, Cheng H M 2012 Nat. Commun. 3 699

    [10]

    Yan Z, Peng Z W, Sun Z Z, Yao J, Zhu Y, Liu Z, Ajayan P M, Tour J M 2011 Acs Nano 5 8187

    [11]

    Xu S C, Man B Y, Jiang S Z, Chen C S, Yang C, Liu M, Gao X G, Sun Z C, Zhang C 2013 Cryst. Eng. Comm. 15 1840

    [12]

    Chen J Y, Guo Y L, Wen Y G, Huang L P, Xue Y Z, Geng D C, Wu B, Luo B R, Yu G, Liu Y Q 2013 Adv. Mater. 25 992

    [13]

    Lee J H, Lee E K, Joo W J, Jang Y, Kim B S, Lim J Y, Choi S H, Ahn S J, Ahn J R, Park M H, Yang C W, Choi B L, Hwang S W, Whang D 2014 Science 344 286

    [14]

    Chen Y B, Sun J Y, Gao J F, Du F, Han Q, Nie Y F, Chen Z, Bachmatiuk A, Priydarshi M K, Ma D L, Song X J, Wu X S, Xiong C Y, Rummeli M H, Ding F, Zhang Y F, Liu Z F 2015 Adv. Mater. 27 7839

    [15]

    Tang S J, Wang H M, Wang H S, Sun Q J, Zhang X Y, Cong C X, Xie H, Liu X Y, Zhou X H, Huang F Q, Chen X S, Yu T, Ding F, Xie X M, Jiang M H 2015 Nat. Commun. 6 6499

    [16]

    Suk J W, Lee W H, Lee J, Chou H, Piner R D, Hao Y F, Akinwande D, Ruoff R S 2013 Nano Lett. 13 1462

    [17]

    Pirkle A, Chan J, Venugopal A, Hinojos D, Magnuson C W, McDonnell S, Colombo L, Vogel E M, Ruoff R S, Wallace R M 2011 Appl. Phys. Lett. 99 122108

    [18]

    Pan Y, Shi D X, Gao H J 2007 Chin. Phys. 16 3151

    [19]

    Pan Y, Zhang H G, Shi D X, Sun J T, Du S X, Liu F, Gao H J 2009 Adv. Mater. 21 2777

    [20]

    Sutter P W, Flege J I, Sutter E A 2008 Nat. Mater. 7 406

    [21]

    Meng L, Wu R T, Zhang L Z, Li L F, Du S X, Wang Y L, Gao H J 2012 J. Phys.: Condens. Matter 24 314214

    [22]

    N'Diaye A T, Coraux J, Plasa T N, Busse C, Michely T 2008 New J. Phys. 10 043033

    [23]

    Usachov D, Dobrotvorskii A M, Varykhalov A, Rader O, Gudat W, Shikin A M, Adamchuk V K 2008 Phys. Rev. B 78 085403

    [24]

    Odahara G, Otani S, Oshima C, Suzuki M, Yasue T, Koshikawa T 2011 Surf. Sci. 605 1095

    [25]

    Preobrajenski A B, Ng M L, Vinogradov A S, Martensson N 2008 Phys. Rev. B 78 073401

    [26]

    Starodub E, Bostwick A, Moreschini L, Nie S, El Gabaly F, McCarty K F, Rotenberg E 2011 Phys. Rev. B 83 125428

    [27]

    Que Y D, Zhang Y, Wang Y L, Huang L, Xu W Y, Tao J, Wu L J, Zhu Y M, Kim K, Weinl M, Schreck M, Shen C M, Du S X, Liu Y Q, Gao H J 2015 Adv. Mater. Interfaces 2 1400543

    [28]

    Meng L, Wu R T, Zhou H T, Li G, Zhang Y, Li L F, Wang Y L, Gao H J 2012 Appl. Phys. Lett. 100 083101

    [29]

    Mao J H, Huang L, Pan Y, Gao M, He J F, Zhou H T, Guo H M, Tian Y, Zou Q, Zhang L Z, Zhang H G, Wang Y L, Du S X, Zhou X J, Neto A H C, Gao H J 2012 Appl. Phys. Lett. 100 093101

    [30]

    Huang L, Zhang Y F, Zhang Y Y, Xu W Y, Que Y D, Li E, Pan J B, Wang Y L, Liu Y Q, Du S X, Pantelides S T, Gao H J 2017 Nano Lett. 17 1161

    [31]

    Cai Y, Chuu C P, Wei C M, Chou M Y 2013 Phys. Rev. B 88 245408

    [32]

    Cinquanta E, Scalise E, Chiappe D, Grazianetti C, van den Broek B, Houssa M, Fanciulli M, Molle A 2013 J. Phys. Chem. C 117 16719

    [33]

    Sutter P, Hybertsen M S, Sadowski J T, Sutter E 2009 Nano Lett. 9 2654

    [34]

    Vanderveen J F, Himpsel F J, Eastman D E 1980 Phys. Rev. B 22 4226

    [35]

    Casiraghi C, Pisana S, Novoselov K S, Geim A K, Ferrari A C 2007 Appl. Phys. Lett. 91 233108

    [36]

    Ferralis N, Maboudian R, Carraro C 2008 Phys. Rev. Lett. 101 156801

    [37]

    Das A, Pisana S, Chakraborty B, Piscanec S, Saha S K, Waghmare U V, Novoselov K S, Krishnamurthy H R, Geim A K, Ferrari A C, Sood A K 2008 Nat. Nanotechnol. 3 210

    [38]

    Mohiuddin T M G, Lombardo A, Nair R R, Bonetti A, Savini G, Jalil R, Bonini N, Basko D M, Galiotis C, Marzari N, Novoselov K S, Geim A K, Ferrari A C 2009 Phys. Rev. B 79 205433

    [39]

    Li L, Wang Y, Meng L, Wu R, Gao H J 2013 Appl. Phys. Lett. 102 093106

    [40]

    Robertson J 2006 Rep. Prog. Phys. 69 327

    [41]

    Li L F, Wang Y L, Xie S Y, Li X B, Wang Y Q, Wu R T, Sun H B, Zhang S B, Gao H J 2013 Nano Lett. 13 4671

    [42]

    Beenakker C W J 2008 Rev. Mod. Phys. 80 1337

    [43]

    Heersche H B, Jarillo-Herrero P, Oostinga J B, Vandersypen L M K, Morpurgo A F 2007 Nature 446 56

    [44]

    Jin L, Fu Q, Mu R T, Tan D L, Bao X H 2011 Phys. Chem. Chem. Phys. 13 16655

    [45]

    Fei X M, Zhang L Z, Xiao W D, Chen H, Que Y D, Liu L W, Yang K, Du S X, Gao H J 2015 J. Phys. Chem. C 119 9839

    [46]

    Schumacher S, Huttmann F, Petrović M, Witt C, Frster D F, Vo-van C, Coraux J, Martnez-Galera A J, Sessi V, Vergara I, Rckamp R, Grninger M, Schleheck N, Meyer zu Heringdorf F, Ohresser P, Kralj M, Wehling T O, Michely T 2014 Phys. Rev. B 90 235437

    [47]

    Huang L, Pan Y, Pan L D, Gao M, Xu W Y, Que Y D, Zhou H T, Wang Y L, Du S X, Gao H J 2011 Appl. Phys. Lett. 99 163107

    [48]

    Girit C O, Meyer J C, Erni R, Rossell M D, Kisielowski C, Yang L, Park C H, Crommie M F, Cohen M L, Louie S G, Zettl A 2009 Science 323 1705

    [49]

    Sutter P, Sadowski J T, Sutter E A 2010 J. Am. Chem. Soc. 132 8175

    [50]

    Xia C, Watcharinyanon S, Zakharov A A, Yakimova R, Hultman L, Johansson L I, Virojanadara C 2012 Phys. Rev. B 85 045418

    [51]

    Cui Y, Gao J F, Jin L, Zhao J J, Tan D L, Fu Q, Bao X H 2012 Nano Res. 5 352

    [52]

    Li G, Zhou H T, Pan L D, Zhang Y, Huang L, Xu W Y, Du S X, Ouyang M, Ferrari A C, Gao H J 2015 J. Am. Chem. Soc. 137 7099

    [53]

    Cui Y, Fu Q, Bao X H 2010 Phys. Chem. Chem. Phys. 12 5053

    [54]

    Schumacher S, Forster D F, Rosner M, Wehling T O, Michely T 2013 Phys. Rev. Lett. 110 086111

    [55]

    dos Santos J M B L, Peres N M R, Castro A H 2007 Phys. Rev. Lett. 99 256802

    [56]

    Kim N, Kim K S, Jung N, Brus L, Kim P 2011 Nano Lett. 11 860

    [57]

    Que Y D, Xiao W D, Fei X M, Chen H, Huang L, Du S X, Gao H J 2014 Appl. Phys. Lett. 104 093110

    [58]

    Meyer J C, Kisielowski C, Erni R, Rossell M D, Crommie M F, Zettl A 2008 Nano Lett. 8 3582

    [59]

    Wang B, Bocquet M L, Marchini S, Gunther S, Wintterlin J 2008 Phys. Chem. Chem. Phys. 10 3530

    [60]

    Martoccia D, Willmott P R, Brugger T, Bjorck M, Gunther S, Schleputz C M, Cervellino A, Pauli S A, Patterson B D, Marchini S, Wintterlin J, Moritz W, Greber T 2008 Phys. Rev. Lett. 101 126102

    [61]

    Peng X Y, Ahuja R 2010 Phys. Rev. B 82 045425

    [62]

    Zhang H, Fu Q, Cui Y, Tan D L, Bao X H 2009 J. Phys. Chem. C 113 8296

    [63]

    Du Y, Zhuang J, Wang J, Li Z, Liu H, Zhao J, Xu X, Feng H, Chen L, Wu K, Wang X, Dou S X 2016 Sci. Adv. 2 e1600067

  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197

    [2]

    Novoselov K S, Jiang Z, Zhang Y, Morozov S V, Stormer H L, Zeitler U, Maan J C, Boebinger G S, Kim P, Geim A K 2007 Science 315 1379

    [3]

    Zhang Y B, Tan Y W, Stormer H L, Kim P 2005 Nature 438 201

    [4]

    Beenakker C W J 2006 Phys. Rev. Lett. 97 067007

    [5]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [6]

    Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109

    [7]

    Li X S, Cai W W, An J H, Kim S, Nah J, Yang D X, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L, Ruoff R S 2009 Science 324 1312

    [8]

    Bae S, Kim H, Lee Y, Xu X F, Park J S, Zheng Y, Balakrishnan J, Lei T, Kim H R, Song Y I, Kim Y J, Kim K S, Ozyilmaz B, Ahn J H, Hong B H, Iijima S 2010 Nat. Nanotechnol. 5 574

    [9]

    Gao L B, Ren W C, Xu H L, Jin L, Wang Z X, Ma T, Ma L P, Zhang Z Y, Fu Q, Peng L M, Bao X H, Cheng H M 2012 Nat. Commun. 3 699

    [10]

    Yan Z, Peng Z W, Sun Z Z, Yao J, Zhu Y, Liu Z, Ajayan P M, Tour J M 2011 Acs Nano 5 8187

    [11]

    Xu S C, Man B Y, Jiang S Z, Chen C S, Yang C, Liu M, Gao X G, Sun Z C, Zhang C 2013 Cryst. Eng. Comm. 15 1840

    [12]

    Chen J Y, Guo Y L, Wen Y G, Huang L P, Xue Y Z, Geng D C, Wu B, Luo B R, Yu G, Liu Y Q 2013 Adv. Mater. 25 992

    [13]

    Lee J H, Lee E K, Joo W J, Jang Y, Kim B S, Lim J Y, Choi S H, Ahn S J, Ahn J R, Park M H, Yang C W, Choi B L, Hwang S W, Whang D 2014 Science 344 286

    [14]

    Chen Y B, Sun J Y, Gao J F, Du F, Han Q, Nie Y F, Chen Z, Bachmatiuk A, Priydarshi M K, Ma D L, Song X J, Wu X S, Xiong C Y, Rummeli M H, Ding F, Zhang Y F, Liu Z F 2015 Adv. Mater. 27 7839

    [15]

    Tang S J, Wang H M, Wang H S, Sun Q J, Zhang X Y, Cong C X, Xie H, Liu X Y, Zhou X H, Huang F Q, Chen X S, Yu T, Ding F, Xie X M, Jiang M H 2015 Nat. Commun. 6 6499

    [16]

    Suk J W, Lee W H, Lee J, Chou H, Piner R D, Hao Y F, Akinwande D, Ruoff R S 2013 Nano Lett. 13 1462

    [17]

    Pirkle A, Chan J, Venugopal A, Hinojos D, Magnuson C W, McDonnell S, Colombo L, Vogel E M, Ruoff R S, Wallace R M 2011 Appl. Phys. Lett. 99 122108

    [18]

    Pan Y, Shi D X, Gao H J 2007 Chin. Phys. 16 3151

    [19]

    Pan Y, Zhang H G, Shi D X, Sun J T, Du S X, Liu F, Gao H J 2009 Adv. Mater. 21 2777

    [20]

    Sutter P W, Flege J I, Sutter E A 2008 Nat. Mater. 7 406

    [21]

    Meng L, Wu R T, Zhang L Z, Li L F, Du S X, Wang Y L, Gao H J 2012 J. Phys.: Condens. Matter 24 314214

    [22]

    N'Diaye A T, Coraux J, Plasa T N, Busse C, Michely T 2008 New J. Phys. 10 043033

    [23]

    Usachov D, Dobrotvorskii A M, Varykhalov A, Rader O, Gudat W, Shikin A M, Adamchuk V K 2008 Phys. Rev. B 78 085403

    [24]

    Odahara G, Otani S, Oshima C, Suzuki M, Yasue T, Koshikawa T 2011 Surf. Sci. 605 1095

    [25]

    Preobrajenski A B, Ng M L, Vinogradov A S, Martensson N 2008 Phys. Rev. B 78 073401

    [26]

    Starodub E, Bostwick A, Moreschini L, Nie S, El Gabaly F, McCarty K F, Rotenberg E 2011 Phys. Rev. B 83 125428

    [27]

    Que Y D, Zhang Y, Wang Y L, Huang L, Xu W Y, Tao J, Wu L J, Zhu Y M, Kim K, Weinl M, Schreck M, Shen C M, Du S X, Liu Y Q, Gao H J 2015 Adv. Mater. Interfaces 2 1400543

    [28]

    Meng L, Wu R T, Zhou H T, Li G, Zhang Y, Li L F, Wang Y L, Gao H J 2012 Appl. Phys. Lett. 100 083101

    [29]

    Mao J H, Huang L, Pan Y, Gao M, He J F, Zhou H T, Guo H M, Tian Y, Zou Q, Zhang L Z, Zhang H G, Wang Y L, Du S X, Zhou X J, Neto A H C, Gao H J 2012 Appl. Phys. Lett. 100 093101

    [30]

    Huang L, Zhang Y F, Zhang Y Y, Xu W Y, Que Y D, Li E, Pan J B, Wang Y L, Liu Y Q, Du S X, Pantelides S T, Gao H J 2017 Nano Lett. 17 1161

    [31]

    Cai Y, Chuu C P, Wei C M, Chou M Y 2013 Phys. Rev. B 88 245408

    [32]

    Cinquanta E, Scalise E, Chiappe D, Grazianetti C, van den Broek B, Houssa M, Fanciulli M, Molle A 2013 J. Phys. Chem. C 117 16719

    [33]

    Sutter P, Hybertsen M S, Sadowski J T, Sutter E 2009 Nano Lett. 9 2654

    [34]

    Vanderveen J F, Himpsel F J, Eastman D E 1980 Phys. Rev. B 22 4226

    [35]

    Casiraghi C, Pisana S, Novoselov K S, Geim A K, Ferrari A C 2007 Appl. Phys. Lett. 91 233108

    [36]

    Ferralis N, Maboudian R, Carraro C 2008 Phys. Rev. Lett. 101 156801

    [37]

    Das A, Pisana S, Chakraborty B, Piscanec S, Saha S K, Waghmare U V, Novoselov K S, Krishnamurthy H R, Geim A K, Ferrari A C, Sood A K 2008 Nat. Nanotechnol. 3 210

    [38]

    Mohiuddin T M G, Lombardo A, Nair R R, Bonetti A, Savini G, Jalil R, Bonini N, Basko D M, Galiotis C, Marzari N, Novoselov K S, Geim A K, Ferrari A C 2009 Phys. Rev. B 79 205433

    [39]

    Li L, Wang Y, Meng L, Wu R, Gao H J 2013 Appl. Phys. Lett. 102 093106

    [40]

    Robertson J 2006 Rep. Prog. Phys. 69 327

    [41]

    Li L F, Wang Y L, Xie S Y, Li X B, Wang Y Q, Wu R T, Sun H B, Zhang S B, Gao H J 2013 Nano Lett. 13 4671

    [42]

    Beenakker C W J 2008 Rev. Mod. Phys. 80 1337

    [43]

    Heersche H B, Jarillo-Herrero P, Oostinga J B, Vandersypen L M K, Morpurgo A F 2007 Nature 446 56

    [44]

    Jin L, Fu Q, Mu R T, Tan D L, Bao X H 2011 Phys. Chem. Chem. Phys. 13 16655

    [45]

    Fei X M, Zhang L Z, Xiao W D, Chen H, Que Y D, Liu L W, Yang K, Du S X, Gao H J 2015 J. Phys. Chem. C 119 9839

    [46]

    Schumacher S, Huttmann F, Petrović M, Witt C, Frster D F, Vo-van C, Coraux J, Martnez-Galera A J, Sessi V, Vergara I, Rckamp R, Grninger M, Schleheck N, Meyer zu Heringdorf F, Ohresser P, Kralj M, Wehling T O, Michely T 2014 Phys. Rev. B 90 235437

    [47]

    Huang L, Pan Y, Pan L D, Gao M, Xu W Y, Que Y D, Zhou H T, Wang Y L, Du S X, Gao H J 2011 Appl. Phys. Lett. 99 163107

    [48]

    Girit C O, Meyer J C, Erni R, Rossell M D, Kisielowski C, Yang L, Park C H, Crommie M F, Cohen M L, Louie S G, Zettl A 2009 Science 323 1705

    [49]

    Sutter P, Sadowski J T, Sutter E A 2010 J. Am. Chem. Soc. 132 8175

    [50]

    Xia C, Watcharinyanon S, Zakharov A A, Yakimova R, Hultman L, Johansson L I, Virojanadara C 2012 Phys. Rev. B 85 045418

    [51]

    Cui Y, Gao J F, Jin L, Zhao J J, Tan D L, Fu Q, Bao X H 2012 Nano Res. 5 352

    [52]

    Li G, Zhou H T, Pan L D, Zhang Y, Huang L, Xu W Y, Du S X, Ouyang M, Ferrari A C, Gao H J 2015 J. Am. Chem. Soc. 137 7099

    [53]

    Cui Y, Fu Q, Bao X H 2010 Phys. Chem. Chem. Phys. 12 5053

    [54]

    Schumacher S, Forster D F, Rosner M, Wehling T O, Michely T 2013 Phys. Rev. Lett. 110 086111

    [55]

    dos Santos J M B L, Peres N M R, Castro A H 2007 Phys. Rev. Lett. 99 256802

    [56]

    Kim N, Kim K S, Jung N, Brus L, Kim P 2011 Nano Lett. 11 860

    [57]

    Que Y D, Xiao W D, Fei X M, Chen H, Huang L, Du S X, Gao H J 2014 Appl. Phys. Lett. 104 093110

    [58]

    Meyer J C, Kisielowski C, Erni R, Rossell M D, Crommie M F, Zettl A 2008 Nano Lett. 8 3582

    [59]

    Wang B, Bocquet M L, Marchini S, Gunther S, Wintterlin J 2008 Phys. Chem. Chem. Phys. 10 3530

    [60]

    Martoccia D, Willmott P R, Brugger T, Bjorck M, Gunther S, Schleputz C M, Cervellino A, Pauli S A, Patterson B D, Marchini S, Wintterlin J, Moritz W, Greber T 2008 Phys. Rev. Lett. 101 126102

    [61]

    Peng X Y, Ahuja R 2010 Phys. Rev. B 82 045425

    [62]

    Zhang H, Fu Q, Cui Y, Tan D L, Bao X H 2009 J. Phys. Chem. C 113 8296

    [63]

    Du Y, Zhuang J, Wang J, Li Z, Liu H, Zhao J, Xu X, Feng H, Chen L, Wu K, Wang X, Dou S X 2016 Sci. Adv. 2 e1600067

  • [1] 张逸飞, 刘媛, 梅家栋, 王军转, 王肖沐, 施毅. 基于纳米金属阵列天线的石墨烯/硅近红外探测器.  , 2024, 73(6): 064202. doi: 10.7498/aps.73.20231657
    [2] 唐海涛, 米壮, 王文宇, 唐向前, 叶霞, 单欣岩, 陆兴华. 用于扫描隧道显微镜的低噪声前置电流放大器.  , 2024, 73(13): 130702. doi: 10.7498/aps.73.20240560
    [3] 黄德饶, 宋俊杰, 何丕模, 黄凯凯, 张寒洁. Ru(0001)上的9,9′-二亚呫吨分子吸附行为和石墨烯摩尔超结构.  , 2022, 71(21): 216801. doi: 10.7498/aps.71.20221057
    [4] 黄德饶, 宋俊杰, 何丕模, 黄凯凯, 张寒洁. Ru(0001)上的9,9'-二亚呫吨分子吸附行为和石墨烯摩尔超结构研究.  , 2022, 0(0): . doi: 10.7498/aps.7120221057
    [5] 张玉响, 彭倚天, 郎浩杰. 基于原子力显微镜的石墨烯表面图案化摩擦调控.  , 2020, 69(10): 106801. doi: 10.7498/aps.69.20200124
    [6] 张志模, 张文号, 付英双. 二维拓扑绝缘体的扫描隧道显微镜研究.  , 2019, 68(22): 226801. doi: 10.7498/aps.68.20191631
    [7] 尤思凡, 孙鲁晔, 郭静, 裘晓辉, 江颖. 表/界面水的扫描探针技术研究进展.  , 2019, 68(1): 016802. doi: 10.7498/aps.68.20182201
    [8] 陈彩云, 刘进行, 张小敏, 李金龙, 任玲玲, 董国材. 扫描电子显微镜法测定金属衬底上石墨烯薄膜的覆盖度.  , 2018, 67(7): 076802. doi: 10.7498/aps.67.20172654
    [9] 顾强强, 万思源, 杨欢, 闻海虎. 铁基超导体的扫描隧道显微镜研究进展.  , 2018, 67(20): 207401. doi: 10.7498/aps.67.20181818
    [10] 武佩, 胡潇, 张健, 孙连峰. 硅基底石墨烯器件的现状及发展趋势.  , 2017, 66(21): 218102. doi: 10.7498/aps.66.218102
    [11] 庞宗强, 张悦, 戎舟, 江兵, 刘瑞兰, 唐超. 利用扫描隧道显微镜研究水分子在Cu(110)表面的吸附与分解.  , 2016, 65(22): 226801. doi: 10.7498/aps.65.226801
    [12] 刘梦溪, 张艳锋, 刘忠范. 石墨烯-六方氮化硼面内异质结构的扫描隧道显微学研究.  , 2015, 64(7): 078101. doi: 10.7498/aps.64.078101
    [13] 黄向前, 林陈昉, 尹秀丽, 赵汝光, 王恩哥, 胡宗海. 一维石墨烯超晶格上的氢吸附.  , 2014, 63(19): 197301. doi: 10.7498/aps.63.197301
    [14] 杨景景, 杜文汉. Sr/Si(100)表面TiSi2纳米岛的扫描隧道显微镜研究.  , 2011, 60(3): 037301. doi: 10.7498/aps.60.037301
    [15] 黄仁忠, 刘柳, 杨文静. 扫描隧道显微镜针尖调制的薄膜表面的原子扩散.  , 2011, 60(11): 116803. doi: 10.7498/aps.60.116803
    [16] 王 祺, 赵华波, 张朝晖. 高定向热解石墨表面局域导电增强现象的扫描探针显微学研究.  , 2008, 57(5): 3059-3063. doi: 10.7498/aps.57.3059
    [17] 葛四平, 朱 星, 杨威生. 用扫描隧道显微镜操纵Cu亚表面自间隙原子.  , 2005, 54(2): 824-831. doi: 10.7498/aps.54.824
    [18] 陈永军, 赵汝光, 杨威生. 长链烷烃和醇在石墨表面吸附的扫描隧道显微镜研究.  , 2005, 54(1): 284-290. doi: 10.7498/aps.54.284
    [19] 张永平, 闫隆, 解思深, 庞世谨, 高鸿钧. Si(111)-(7×7)表面上Ge量子点的自组织生长.  , 2002, 51(2): 296-299. doi: 10.7498/aps.51.296
    [20] 王 浩, 赵学应, 杨威生. 天冬氨酸在Cu(001)表面吸附的扫描隧道显微镜研究.  , 2000, 49(7): 1316-1320. doi: 10.7498/aps.49.1316
计量
  • 文章访问数:  8642
  • PDF下载量:  399
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-07-14
  • 修回日期:  2017-08-31
  • 刊出日期:  2017-11-05

/

返回文章
返回
Baidu
map